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1  | INTRODUCTION

Large‐scale biodiversity databases (e.g., Global Biodiversity 
Information Facility [GBIF], Edwards, Lane, & Nielsen, 2000; Botany 
Information and Ecology Network [BIEN], Enquist, Condit, Peet, 
Schildhauer, & Thiers, 2009; sPlot, Bruelheide et  al., 2019) are 
valuable resources for understanding species distributions and dy‐
namics. Possible applications include broad‐scale analyses across 
species or community types (Bruelheide et al., 2018; Jiménez‐Alfaro 
et al., 2018), species distribution models (SDM) (Gomes et al., 2018; 
Wasof et al., 2015), and monitoring biodiversity changes over time 
(Bertrand et al., 2011; Jandt, von Wehrden, & Bruelheide, 2011). For 
broad‐scale analyses covering the entire range of species, the quality 
of the sampling coverage across a given species range or throughout 

its realized niche is crucial. Hence, consistent data distribution is 
highly desirable across both the geographic and environmental space 
(Broennimann & Guisan, 2008; Pearman, Guisan, Broennimann, and 
Randin, 2008; Troia & McManamay, 2016). However, biodiversity 
databases often suffer from sampling gaps and biases limiting their 
application potential. Because of the uneven collection effort (Daru 
et al., 2018; 2008; Speed et al., 2018) often caused by difficult ac‐
cess to some areas (Sousa‐Baena, Garcia, & Peterson, 2014), broad 
regions of the world remain poorly sampled. Even comprehensive 
databases of species occurrences in well‐surveyed regions are prone 
to geographic (Yang, Ma, & Kreft, 2013) and taxonomic biases (Pyke 
& Ehrlich, 2010; Soberón, Jiménez, Golubov, & Koleff, 2007). In 
an in‐depth evaluation, Meyer, Weigelt, & Kreft (2016) found se‐
vere geographical bias in the GBIF database (Edwards et al., 2000), 
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Abstract
Aim: Biodiversity databases are valuable resources for understanding plant spe‐
cies distributions and dynamics, but they may insufficiently represent the actual 
geographic distribution and climatic niches of species. Here we propose and test a 
method to assess sampling coverage of species distribution in biodiversity databases 
in geographic and climatic space.
Location: Europe.
Methods: Using a test selection of 808,794 vegetation plots from the European 
Vegetation Archive (EVA), we assessed the sampling coverage of 564 European vas‐
cular plant species across both their geographic ranges and realized climatic niches. 
Range maps from the Chorological Database Halle (CDH) were used as background ref‐
erence data to capture species geographic ranges and to derive species climatic niches. 
To quantify sampling coverage, we developed a box‐counting method, the Dynamic 
Match Coefficient (DMC), which quantifies how much a set of occurrences of a given 
species matches with its geographic range or climatic niche. DMC is the area under the 
curve measuring the match between occurrence data and background reference (geo‐
graphic range or climatic niche) across grids with variable resolution. High DMC values 
indicate good sampling coverage. We applied null models to compare observed DMC 
values with expectations from random distributions across species ranges and niches.
Results: Comparisons with null models showed that, for most species, actual distribu‐
tions within EVA are deviating from null model expectations and are more clumped 
than expected in both geographic and climatic space. Despite high interspecific varia‐
tion, we found a positive relationship in DMC values between geographic and climatic 
space, but sampling coverage was in general more random across geographic space.
Conclusion: Because DMC values are species‐specific and most biodiversity data‐
bases are clearly biased in terms of sampling coverage of species occurrences, we 
recommend using DMC values as covariates in macro‐ecological models that use spe‐
cies as the observation unit.
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concluding that data limitations are rather the rule than the excep‐
tion for most species and regions.

Species distribution models (SDM) are commonly used for 
macro‐ecological niche analyses. They represent the estimation 
of species occurrence probabilities based on observed geographic 
distributions. Thereby, SDMs are sensitive to poor sampling cover‐
age, especially if spatial bias results in climatically biased sampling 
(Fourcade, Engler, Rödder, & Secondi, 2014). In such situations, 
SDMs tend to misestimate species climatic niches (Titeux et  al., 
2017). Thus, for reliable analyses of biodiversity distribution pat‐
terns, sampling coverage needs to be representative for both the 
climatic and geographic space (Hortal, Jiménez‐Valverde, Gómez, 
Lobo, & Baselga, 2008; Troia & McManamay, 2016). Unbiased sam‐
pling is typically obtained by meeting two interrelated requirements: 
sufficient sample size and even coverage of geographical and en‐
vironmental gradients. Towards coarser spatial resolution, good 
coverage is easier to achieve and, as a consequence, sampling bias 
typically decreases. Consequently, the negative impact of sampling 
bias is clearly related to spatial grain. Several studies have analyzed 
the importance of spatial scaling in niche studies (Hortal, Borges, & 
Gaspar, 2006; Pearman et al., 2008; Soberón et al., 2007). Recently, 
procedures have been developed to assess the completeness of a 
spatial dataset at different spatial resolutions in geographic space 
(KnowBR, Lobo et  al., 2018; downscale, Marsh, Barwell, Gavish, 
& Kunin, 2018). At large spatial extent, climate is among the most 
important factors determining species distributions (Woodward, 
1987). However, although including climate seems straightforward, 
until now, few studies have accounted for how evenly occurrence 
data cover species ranges in climatic space (Bruelheide et al., 2018). 
To our knowledge, no study has explicitly tested the degree to which 
the spatial distribution of occurrences represents the geographical 
range as well as the climatic niche of the sampled species.

Here we test the spatial and climatic coverage of plant occur‐
rence data using an example dataset of the European Vegetation 
Archive (EVA). EVA is a key macro‐ecological resource that incorpo‐
rates information from 57 countries on ~1.5 million vegetation plots 
containing more than 10,000 vascular plant species (Chytrý et al., 
2016). EVA data are used for various research objectives, yet the 
degree of unevenness in sampling effort across Europe's geographic 
and environmental space is unclear. A species distribution database 
covering EVA's spatial extent, but otherwise independent from EVA, 
is the Chorological Database Halle (CDH; E. Welk et al., unpublished 
data). CDH stores georeferenced information (range polygons and 
point occurrences) on the distribution range of more than 1,200 
European vascular plant species. Species distribution data from 
CDH have already been used in several biodiversity studies (Csergő 
et al., 2017; San‐Miguel‐Ayanz, de Rigo, Caudullo, Houston Durrant, 
& Mauri, 2016; Schleuning et al., 2016) and as basis for biogeograph‐
ical experiments on plant range limits (Bütof et al., 2012; Hofmann, 
Bütof, Welk, & Bruelheide, 2013; Welk, Welk, & Bruelheide, 2014). 
Here, we made use of expert‐based range maps stored in CDH to 
extract information on both species’ geographic ranges and climatic 
niches and assess the sampling coverage of species occurrences 

stored in EVA across each of these two backgrounds (geographic 
and climatic).

To quantify sampling coverage, we developed the Dynamic 
Match Coefficient (DMC), a measure based on the area‐under‐the‐
curve (AUC) derived from threshold‐independent box‐counting 
statistics across variable spatial grains. We compared the observed 
DMC values with the values of plots randomly distributed across 
the species range and niche. Thereby, we produced an expected 
null reference distribution (Nunes & Pearson, 2017) within both the 
geographic and climatic space for a given sampling effort (sample 
size) and corresponding to the observed species frequency in the 
database. This enabled us to evaluate the observed plot distribu‐
tion in geographic space (DMCGEO) and climatic space (DMCCLIM) in 
comparison to expectations of randomly distributed plots across the 
species range and realized climatic niche. We tested four hypotheses 
on sampling coverage of species occurrences across both the geo‐
graphic and climatic space:

1.	  Sampling coverage within the climatic space depends strongly 
on good sampling coverage across the geographic space because 
climatic conditions are spatially autocorrelated. We expect a 
positive correlation between sampling coverage in the geo‐
graphic and climatic space.

2.	  Sampling coverage is less representative in the climatic space 
than in the geographic space. The reason is the asymmetric 
transferability between points in the climatic and geographic 
space: a single point within the climatic space might translate 
to several geographic locations, while a single geographic loca‐
tion can only translate to one point in the climatic space. An in‐
crease in sampling coverage within the geographic space might 
thus be without positive effect on sampling coverage within 
the climatic space.

3.	  Given the general sampling issues of biodiversity databases 
mentioned above and the heterogeneous nature of their source 
data, we expect that sampling coverage of the realized niches 
of plant species by such data is largely imperfect because of an 
underdispersed (clumped) distribution of species observations 
within the geographic space and supposedly also within the cli‐
matic space.

4.	  Finally, for a given range size and macroclimatic niche size, we 
expect sampling coverage to increase with increasing sample size.

2  | MATERIALS AND METHODS

We assessed the sampling coverage of European vascular plant spe‐
cies ranges (using species range data from the Chorological Database 
Halle, CDH) by a test selection of species occurrence data taken 
from vegetation plots from the European Vegetation Archive (EVA, 
Chytrý et al., 2016). We did this both in the geographic space (distri‐
bution range data from CDH) and in the climatic space (realized cli‐
matic niche space derived from CDH geographical distributions). We 
focused on species presence data (i.e., locations of vegetation plots 
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in which the focal species was recorded) and examined the relation‐
ship between the geographic and climatic sampling coverage, as well 
as interspecific variability. The study area comprised all European 
countries plus Turkey, Georgia, Armenia and Azerbaijan (Figure 1a).

2.1 | Background data on species geographic 
range and climatic niche

The Chorological Database Halle (CDH) stores information on dis‐
tribution ranges of about 17,000 vascular plant taxa. For 5,583 taxa, 
maps were compiled based on published distribution range maps 
(Meusel & Jäger, 1992; Meusel, Jäger, Rauschert, & Weinert, 1978; 
Meusel, Jäger, & Weinert, 1965), national and floristic databases and 
further maps from floristic literature (see bibliographic details in 
Index Holmiensis: Lundqvist, 1992; Lundqvist & Jäger, 1995‐2007; 
Lundqvist & Nordenstam, 1988; Tralau, 1969‐1981). CDH data can 
be requested for research objectives via http://choro​logie.biolo​
gie.uni-halle.de/choro/​. We retrieved from CDH the available geo‐
graphical information for the distribution ranges of 1,200 European 
vascular plant species in electronic format (range polygons and point 
occurrences) in October 2015. The species range information was 
processed as raster layers of 2.5‐min cell resolution, which is about 
15 km2 in Central Europe (Figure 1a). The multi‐dimensional climatic 
space (climatic niche) was determined by principal components anal‐
ysis (PCA) of 19 bioclimatic variables from Worldclim with 2.5‐min 
cell resolution (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; for 
detailed information see Appendix S1).

2.2 | Vegetation plots

A test selection of vegetation plots was provided by the European 
Vegetation Archive (EVA)  in October 2015, containing information 
on 10,082 species from 933,228 vegetation plots. This selection in‐
cluded all the plots that were available in EVA at that time. Data 
for intraspecific taxa such as subspecies were merged at the species 

level. Further, we matched species names and checked for synonyms 
according to (a) the taxonomic reference list for Germany (German 
SL version 1.2, Jansen & Dengler, 2008) and (b) all taxonomic refer‐
ence lists available via the R package ‘taxize’ (Chamberlain & Szöcs, 
2013; R Core Team, 2018). We excluded trees, bryophytes, lichens, 
fungi, algae, and species exotic to Europe. We also excluded 67,200 
vegetation plots with location uncertainty larger than 10 km and 417 
species that occurred in <10 plots.

After matching EVA and CDH species, 808,794 vegetation 
plots contained at least one of the 564 vascular plant species 
(herbs, dwarf shrubs and shrubs) with available digitized geo‐
graphic distribution data in CDH. A list of these species and all 
the databases that provided vegetation plot data can be found in 
Appendices S2 and S3. The 808,794 vegetation plots from EVA 
were heterogeneously distributed across the study area in the 
geographic space. While some geographic regions were repre‐
sented very well and with high density (e.g., the Czech Republic, 
the Netherlands), other regions were represented sparsely (e.g., 
Norway, Sweden, Finland, Belarus, parts of Russia; Figure 1a). In 
contrast to geographic space, the study area was well represented 
by EVA vegetation plots in climatic space, except some marginal 
parts of the climatic background space (Figure 1b). The maximum 
density of species was 396 species per 2.5‐min raster cell in geo‐
graphic space (Figure 2a) and 528 species per cell in climatic space 
(Figure 2b). Stacked CDH ranges of the 564 study species covered 
98.5% of the study area in geographic space (154,455 raster cells 
of 2.5 min in total) (Figure 2a) and 100% in climatic space (9,931 
cells in total; Figure 2b).

2.3 | Dynamic Match Coefficient (DMC) — 
a measure of plot sampling coverage across 
spatial scales

Sampling bias is mainly a result of two interrelated issues: insuffi‐
cient number of samples and inadequate sample distribution. The 

F I G U R E  1   Distribution of the 808,794 vegetation plots (green dots) extracted from EVA (European Vegetation Archive). Only plots with 
at least one of the 564 study species are shown. The study species’ merged distributions based on the Chorological Database Halle (CDH) 
are represented by grey cells. White areas (large water bodies, glaciers, and deserts) represent regions where none of the studied species 
occur. (a) Distribution of vegetation plots in geographic space. (b) Distribution of vegetation plots in climatic space represented by its first 
two PCA axes (74.1% and 13.9% variance explained by PC1 and PC2, respectively), where PC1 and PC2 were negatively and positively 
related to temperature and precipitation, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

http://chorologie.biologie.uni-halle.de/choro/
http://chorologie.biologie.uni-halle.de/choro/
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impact of sampling bias is related to spatial scale (spatial extent and 
grain size) and should decrease with increasing grain size. The spatial 
arrangement of sampling locations could be evaluated by classical 
methods of point pattern analysis (Boots & Getis, 1988; Wiegand 
& Moloney, 2013). However, there are two main issues related to 
the spatial pattern in the ecological domain of the data of interest. 
First, because of the generally irregular, often non‐contiguous ge‐
ometry of plant distribution ranges, traditional Euclidean geometry 
often fails to estimate characteristics of point patterns correctly 
(Pentland, 1984). Second, species ranges and niches cannot be re‐
garded as merely geometric phenomena. Spatio‐temporal popula‐
tion processes often result in complex range structures of genetic 
diversity, demographic performance and abundance (Peterson et al., 
2011; Ricklefs, 2004).

To measure how well, i.e., how uniform vs clustered and simul‐
taneously how dense or scarce vegetation plots containing the focal 
species are located across the species̀  range or niche, we developed 
a measure inspired by fractal dimension analysis (Hall & Wood, 1993), 
which we call the Dynamic Match Coefficient (DMC). The DMC 
represents a measure of cell matches between a point pattern and 

spatial layers that are iterated across different raster cell resolutions 
(grain sizes), from fine to coarse (Figure 3). Here, 20 iterative scaling 
steps were used, which resulted in a maximum achievable DMC of 
2,000 (20 × 100% match). The obtained values were standardized 
to 0–1. For all species, the starting grain size in geographic space 
was 1/20th of the respective species maximum North–South and 
East–West range extent. Hence, the initial grain size was smaller for 
small‐range species (e.g., 50 km × 20 km for Centaurea deustiformis) 
than for large‐range species (e.g., 211  km  ×  273  km for Plantago 
major) (see Appendices S2 and S4.1 for distribution of initial grain 
sizes in DMC calculations). Among the chosen starting grain sizes 
for the geographic space, even the finest grid cells (50 km × 20 km) 
are at a spatial resolution where climate conditions are considered 
the most important (Pearson & Dawson, 2003). The scaling proce‐
dure used in the climatic space was similar to that in the geographic 
space. Here the initial grain size was derived as the 1/20th fraction 
of the respective species maximum niche extent along the first two 
PCA axes. High DMC values indicate high sampling coverage, i.e., a 
more regular distribution and density of EVA vegetation plots across 
a species distribution range or within its realized climatic niche. In 

F I G U R E  2   Study species data density in geographic and climatic space. (a) Data density on species geographic ranges of 564 vascular 
plant species included in this study on a 2.5‐min resolution raster. White areas (large water bodies, glaciers, and deserts) represent regions 
where none of the studied species occur. (b) Data density on climatic niches of 564 species in the respective common climatic space 
represented by its first two PCA axes (74.1% and 13.9% variance explained by PC1 and PC2, respectively), where PC1 and PC2 were 
negatively and positively related to temperature and precipitation, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Dynamic Match Coefficient 
(DMC) calculated for two example species 
X and Y with different plot distributions 
but similar ranges and climatic niches. 
DMC measures sampling coverage from 
fine resolution to coarse resolution as 
the area under the curve (AUC). Scaling 
for species X, with clumped plots (10 
red dots) in the species range or climatic 
niche (grey background), results in a low 
DMC value. Scaling for species Y, with 
more regularly distributed plots (10 blue 
dots) in the species range or climatic niche 
(grey background), results in a high DMC 
value [Colour figure can be viewed at 
wileyonlinelibrary.com]
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contrast, low DMC values indicate underdispersed sampling cover‐
age, i.e., clumped distribution and/or inappropriately low density of 
EVA vegetation plots across a species distribution range or within its 
realized climatic niche (Figure 3).

Figure 4 shows how the DMC approach works for the geographic 
and climatic space and for two contrasting species: Hieracium mur‐
orum, a species with clumped distribution in EVA plots, and Calluna 
vulgaris, a species with a more regular distribution in EVA plots, both 
in the species range and in the realized climatic niche (Figure  4a). 
Range size and the number of vegetation plots are similar in both 
species. The cell match ratio between species range and EVA vege‐
tation plots was calculated in 20 iterations from fine to coarse ras‐
ter cell resolution for both species in the geographic and climatic 
space (Figure 4b). The cell match ratio at the 20 single raster steps 
was summed up, and this sum is what we term the final DMC value 
of a species in the geographic space (DMCGEO) and climatic space 

(DMCCLIM). For Hieracium murorum, DMC values reached 0.42 and 
0.58 for the geographic (DMCGEO) and climatic (DMCCLIM) space, re‐
spectively. For Calluna vulgaris, DMC values reached 0.74 for both 
the geographic (DMCGEO) and climatic (DMCCLIM) space.

2.4 | Observed vs expected distributions

In order to quantify how far the observed DMC deviates from an 
expected random distribution, we applied a null model simulation 
(Nunes & Pearson, 2017) for each species. We randomly distrib‐
uted a number of species occurrences for each species (n = num‐
ber of plots containing the species) across its geographic range and 
climatic niche. We calculated the DMCGEO and DMCCLIM values for 
100 such random distributions in the geographic and climatic space, 
respectively, and compared the simulated DMC distribution with 
the observed value. To quantify the deviation of the observed DMC 

F I G U R E  4   The DMC scaling approach applied to the distribution of EVA vegetation plots inside species ranges in geographic space 
and inside species niches in climatic space (grey cells). (a) The distribution of EVA plots containing Hieracium murorum (left, red) and Calluna 
vulgaris (right, blue). (b) Four selected scaling steps from fine to coarse raster‐cell resolution in geographic space (left‐hand four panels in 
each set) and climatic space (right‐hand four panels in each set). (c) The resulting DMC curves along 20 scaling steps, where the cell match 
ratio is the percentage of grey raster cells (species range or climatic niche) matched by a vegetation plot containing the species. In all cases, 
the maximum achievable DMC is 1 (100% cell match in all scaling steps). DMC values reached 0.42 and 0.58 for the geographic (DMCGEO) 
and climatic (DMCCLIM) space for Hieracium murorum and 0.74 for both the geographic (DMCGEO) and climatic (DMCCLIM) space for Calluna 
vulgaris [Colour figure can be viewed at wileyonlinelibrary.com]
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value from the median of the simulated ideal random distribution 
(DMCNULL) we calculated a DMC ratio as:

A high DMC ratio corresponds to an underdispersed distribu‐
tion of the EVA plots containing the species, while a low DMC ratio 
corresponds to a more random distribution. A negative ratio corre‐
sponds to an overdispersed distribution.

2.5 | Effect of sample size on the DMC value

We analyzed the effect of sample size (number of EVA plots contain‐
ing a given species) on DMC values while accounting for range size 
(or niche size) by applying linear models with DMCGEO (or DMCCLIM) 
values as the response variable, sample size as the main explanatory 
variable and range size (resp. niche size) as a covariate to correct for 
potential confounding effects of range size or niche size. In a first 
step, for each species, the percentage match of the species range 
(derived from CDH) by the respective EVA vegetation plots where 
the species occurred was calculated at 2.5‐min raster cell resolution. 
Multiple occurrences per raster cell were reduced to presence–ab‐
sence data per species and 2.5‐min raster cell. In the second step, 
species ranges and the respective vegetation plots were projected 
into the climatic space. The study area in the climatic space is well 
represented by its first two PCA axes, which explain 88.0% of the 
data variance (for details see Appendix S1). Finally, the percent‐
age of a species’ climatic niche matched by vegetation plots where 
the species occurred was calculated as the ratio of PCA cells of the 
respective EVA vegetation plots where the species occurred to all 
raster cells matched by the species range in the PCA space (species 
percentage match of its range and niche by EVA vegetation plots is 
provided in Appendix S2).

3  | RESULTS

Overall, sampling coverage of European vascular plant species ranges 
by EVA vegetation plots was more complete within the geographic 
space than within the climatic space (Figure  5), i.e., consistently 
higher DMC values were within the geographic space (DMCGEO). 
The mean of DMCGEO was slightly higher than that of DMCCLIM, 
with values of 0.56 and 0.49, respectively. Species DMCGEO values 
ranged from 0.08 to 0.94. For half of the species the DMCGEO was 
between 0.48 and 0.65 (25th and 75th percentile). DMCCLIM values 
ranged from 0.08 to 0.82 and for half of the species the DMCCLIM 
was between 0.40 and 0.60 (25th and 75th percentile). We found 
a highly significant positive correlation (Spearman′s rho  =  0.768; 
p < 0.001) between species geographic DMC values (DMCGEO) and 
their climatic DMC values (DMCCLIM; Figure  5). DMCCLIM values 
were higher than DMCGEO values for only 119 species (21.1%), while 

445 species (78.9%) had higher DMCGEO values than DMCCLIM val‐
ues. Furthermore, some species showed a high deviation in DMC 
values between the geographic and climatic space. For instance, 
Arabis alpina was more randomly sampled within the climatic space 
(DMCCLIM: 0.55) than within the geographic space (DMCGEO: 0.24), 
while this was the opposite for Vinca major (DMCGEO: 0.63, DMCCLIM: 
0.29). In general a positive relationship between species range size 
and niche size could be observed (Spearman′s rho = 0.805; p < 0.001; 
Appendix S4.2).

3.1 | Deviation of the observed DMC from the 
expected random distribution

We found a positive correlation between the observed DMC 
values and the expected DMC values, based on our null model, 
for both the geographic space (weaker, Spearman′s rho = 0.389; 
p < 0.001) and the climatic space (stronger, Spearman′s rho = 0.824; 
p < 0.001) (Figure 6a, b). Importantly, a large majority (92.0%) of 
the observed species distributions in EVA were significantly un‐
derdispersed in both the geographic and climatic space. This is 
indicated by the position of most of the points above the 1:1 line, 
especially in the climatic space. Exceptionally, for a small number 
of species in the geographic space (43 species, 7.6%; Figure  6a) 
and for two species in the climatic space (Figure 6b), the observed 
DMC values were higher than the null random expectation, indi‐
cating overdispersion.

DMC ratio=

(

DMCNULL−DMCobserved
)

DMCobserved

F I G U R E  5   Scatterplot and Spearman correlation coefficients 
(rho) of the relationship between DMC values in geographic space 
(DMCGEO) and DMC values in climatic space (DMCCLIM) for 564 
plant species. Low DMC values indicate an underdispersed (more 
clumped) distribution of species occurrences in EVA vegetation 
plots, while high DMC values indicate a homogenous distribution 
in EVA vegetation plots, in the geographic range or realized climatic 
niche of a species
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For each species, we calculated the deviation of the observed DMC 
values from the null model DMC values in geographic and climatic 
space. While a low deviation of the observed DMC values from the 
null expectation indicates a more regular distribution of occurrences 
for a given species across its reference range or realized climatic niche, 
a high deviation indicates an underdispersed (more clumped) distribu‐
tion. We found a positive correlation for the deviation of observed 
DMC values from the null model DMC values between geographic 
and climatic space (Spearman′s rho  =  0.615; p  <  0.001). Despite a 
higher variability, DMC deviation from the null model was on average 
slightly lower in geographic space (minDEV_GEO: −0.31, maxDEV_GEO: 
2.47, medianDEV_GEO: 0.46) than in climatic space (minDEV_CLIM:−0.10, 
maxDEV_CLIM:2.09, medianDEV_CLIM:0.47, see Figure 7).

3.2 | Effect of sample size on DMC values

In geographic space, the percentage match of species ranges 
by EVA vegetation plots containing the same species (meas‐
ured as the percentage of the range containing the EVA plots 
at 2.5‐min raster cell resolution) ranged from 0.01% to 67.6%. 
For half of the species, the percentage match was between 
0.5% and 2.3% (25th and 75th percentile), with a mean of 1.1% 
in the geographic space. In the climatic space, the percentage 
match of species niches by EVA vegetation plots ranged from 
0.5% to 72.7% and for half of the species the percentage match 
was between 7.6% and 22.1% (25th and 75th percentile), with 
a mean of 14.1%. The applied linear models revealed a positive 
effect of sample size (vegetation plots) on DMC values while 
accounting for range size or niche size in both the geographic 
space (multiple R2: 0.212) and climatic space (multiple R2: 0.571). 
We found a significantly positive correlation between the per‐
centage match of the species range by EVA plots in both the 
geographic space (Spearman′s rho  =  0.726; p  <  0.001) and cli‐
matic space (Spearman′s rho = 0.901; p < 0.001) (Figure 8a, b). 

Furthermore, we encountered a significantly negative relation‐
ship between percentage match of species ranges by EVA vege‐
tation plots and deviation from the null model in the geographic 
space (Spearman′s rho = −0.601; p < 0.001) and climatic space 
(Spearman′s rho = −0.651; p < 0.001; Figure 8c, d). Apart from 
this, a significantly positive correlation between the percentage 
match of the species range by EVA plots in the geographic space 

F I G U R E  6   Scatterplots and Spearman correlation coefficients (rho) of the relationships between the observed DMC and expected DMC 
derived by null models for (a) geographic space and (b) climatic space. Dots are medians; lines are inter‐quartile ranges of the simulations 
from the null model. Color gradient represents the percentage match of a species range by EVA vegetation plots in the geographic space 
(match at 2.5‐min raster cell resolution) or climate space (ratio of PCA cells matched by EVA plots to all species‐specific raster cells matched 
by the geographic range data in the PCA space) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7   Scatterplot and Spearman correlation coefficients 
(rho) of the relationship between the deviation of the observed 
DMC values from null model DMC values in geographic space 
(DEVGEO) and in climatic space (DEVCLIM). Low deviation of the 
observed DMC values from the null expectation indicates a more 
regular distribution of occurrences for a given species across its 
reference range or realized climatic niche, and a high deviation 
indicates an underdispersed (more clumped) distribution
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and climatic space could be found (Spearman′s rho  =  0.865; 
p < 0.001; Appendix S4.3).

4  | DISCUSSION

4.1 | Plot sampling coverage across spatial scales

In line with the general positive relationship between range size and 
niche size (see Appendix S4.2), we assumed that (1) a species will be well 
sampled throughout its multidimensional climatic niche (reaching high 
DMCCLIM values) only if it is well sampled throughout its geographic 
range (high DMCGEO values). The demonstrated positive correlation be‐
tween DMCCLIM and DMCGEO confirms the first hypothesis. However, 
the relationship was far from perfect, since there are also species that 
are well sampled within the geographic space (reaching high DMCGEO 
values) but less well sampled in the climatic space (reaching low 
DMCCLIM values), and vice versa. Exceptions from the suggested posi‐
tive relationship can arise especially due to high spatial heterogeneity 
in climatic conditions, e.g., in mountain regions (Hirst, Griffin, Sexton, & 
Hoffmann, 2017; Köckemann, Buschmann, & Leuschner, 2009).

Because of the one‐to‐one relationship between climatic and 
geographic data points we expected (2) a sparser species sample 
coverage (lower DMC values) in the climatic space. Accordingly, we 
found that the sampling coverage (DMC value) of species distribution 
in EVA was more random in the geographic space (DMCGEO) than in 
the climatic space (DMCCLIM) for 77.9% of the studied species. This 
more random sampling coverage in geographic space is explainable 

by the niche–biotope duality (Hutchinson, 1978). The same combi‐
nation of climate factors can occur in only one location in geographic 
space, but will more likely occur in several localities with increasing 
spatial extent (Colwell & Rangel, 2009; Soberón & Nakamura, 2009). 
However, the rules that define the niche–biotope duality are not re‐
ciprocal (Colwell & Rangel, 2009; Soberón & Nakamura, 2009), and 
the climatic niche of a species might be fully captured even if only a 
part of its geographic distribution was sampled (Guisan, Petitpierre, 
Broennimann, Daehler, & Kueffer, 2014). This seems to be the case 
for 22.9% of the studied species that occupy ranges with highly het‐
erogeneous climatic conditions (e.g., in mountain regions as men‐
tioned above). For those species, the sampling coverage was higher 
in the climatic space (DMCCLIM) than in geographic space (DMCGEO).

Large‐scale biodiversity databases consist of heterogeneous, 
non‐systematically sampled datasets with underdispersed observa‐
tions within the geographic space and supposedly also within the 
climatic space. We therefore expected (3) the sampling coverage of 
species geographic ranges and climatic niches to be largely imper‐
fect due to sampling biases. Accordingly, we found limited sampling 
coverage for most of the studied species. In almost all cases, the 
observed species distributions in EVA significantly underrepre‐
sented both the species geographic range and climatic niche space. 
It is achievable to identify species which are poorly represented in 
biodiversity databases relative to their geographic ranges or realized 
climatic niches (Boakes et  al., 2010; Hoffmann et  al., 2014). Since 
the observed and expected DMC values were highly positively cor‐
related, the applied null model approach supports the usefulness of 

F I G U R E  8   Scatterplots and Spearman 
correlation coefficients (rho) of the 
relationships between percentage match 
of species ranges by EVA vegetation plots 
and (a) observed DMC in geographic space 
(DMCGEO); (b) observed DMC in climatic 
space (DMCCLIM); (c) deviation of observed 
DMC values from null model DMC 
values in geographic space (DEVGEO); (d) 
deviation of observed DMC values from 
null model DMC values in climatic space 
(DEVCLIM)
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the presented DMC metric to assess sampling bias in the distribution 
of species occurrences in biodiversity databases.

We assumed that (4) on condition that range size and climatic 
niche size are correlated, sampling coverage increases with increas‐
ing sample size. The applied linear models revealed a positive effect 
of sample size on DMC values while accounting for range size and 
niche size, which supports our fourth hypothesis. Nevertheless, es‐
pecially for the geographical space, high percentage cover of species 
range by the EVA plots cannot directly indicate high DMC values. 
In general, the correlation of percentage match of a species range 
by the EVA plots at 2.5‐min raster cell resolution with DMC values 
was highly positive in geographic space. Nevertheless, there were 
species with higher percentage match that only reached lower DMC 
values while there were also species with lower percentage match 
that reached higher DMC values. Our results show that the number 
and thereby the density of observations across a species distribution 
range remains crucial. On the one hand, too small number of plots 
representing a species distribution range may be a sample of insuf‐
ficient size even if the plots are distributed randomly (as suggested 
by the null model calculations). On the other hand, even a large num‐
ber of vegetation plots may underrepresent a species range if their 
spatial distribution is underdispersed. Consequently, both clumping 
and density of occurrence observations have to be considered, com‐
puted and estimated simultaneously to evaluate the representative‐
ness of biodiversity databases.

4.2 | Possible applications of the DMC

Occurrence data and distribution maps for species of various taxa 
are increasingly being made available from biodiversity databases 
(e.g., Map Of Life, Jetz, McPherson, & Guralnick 2012; The IUCN 
Red List, IUCN 2019; Euro+Med Plantbase, Euro+Med 2019; The 
PLANTS Database, USDA, NRCS 2019).

1.	 Our DMC approach enables evaluation and comparison of 
the coverage of occurrence data across irregular and even 
non‐contiguous background spaces. Thus, it helps identifying 
species with a suitable representation of their range/niche by 
existing point samples. In species distribution modeling, uneven 
or inconsistent representation of environmental gradients by 
occurrence records can strongly influence the model accuracy 
(Tessarolo, Rangel, Araújo, & Hortal, 2014), which can result 
in limited applicability for climate change predictions (Araújo 
& Guisan, 2006; Titeux et  al., 2017).

2.	 The DMC value calculation is applicable in both the climatic 
and geographic space and can help evaluate the coverage of 
species samples for species distribution modeling. Using such 
information derived from the DMC metric inside the modeling 
framework of species distribution models (SDMs) is likely to 
improve SDM predictive performance. Nevertheless, inde‐
pendent information on species geographic distribution is 
needed to correctly evaluate point sampling coverage for SDM 
studies. It is not recommended to generate range models based 

on sampling data of unknown coverage. While DMC(GEO) values 
generated this way might be used to gather information on spe‐
cies geographic point sampling quality, DMC(CLIM) values might 
be highly biased. Without independently generated distribu‐
tion information, DMC(CLIM) values are not applicable for SDM 
evaluation. Since observed and expected DMC values (see the 
applied null model approach) were highly positively correlated, 
the deviation from the expected DMC is a suitable measure for 
the representativeness of species occurrence data. A high de‐
viation corresponds to an underdispersed distribution of plots, 
while a low deviation corresponds to a more random distribu‐
tion of plots and a negative deviation corresponds to an overd‐
ispersed distribution of plots.

3.	 Data limitations (i.e., lack of fine‐resolution data of species occur‐
rences over large spatial extents) will remain the norm for most 
species and regions, and best possible use should be made of 
limited information (Hoffmann et  al., 2014; Meyer et  al., 2016). 
Here, based on the curves resulting from the DMC calculations 
it would be possible to determine the raster cell resolution where 
results of the analyses are least vulnerable to errors due to the 
existing sampling gaps by calculating the inflection point of the 
DMC curve. Nevertheless, one must be aware that the achievable 
raster cell resolution always depends on the spatial extent of the 
study (e.g., regional, continental or global scale) (Hartley & Kunin, 
2003; Pearson & Dawson, 2003; Willis & Whittaker, 2002).

4.	 The efficacy of database platforms strongly depends on the 
completeness of species inventories and the survey coverage 
across space and the environment (Hortal et  al., 2008; Troia & 
McManamay, 2016). Therefore it is necessary to continue surveys 
in undersampled areas (Beck et al., 2012; Engemann et al., 2015). 
Here, results of the DMC analyses can be used to identify these 
undersampled areas and help focus search efforts for data infor‐
mation in relevant literature or further databases. This would be 
possible by selecting undersampled parts of the niche and trans‐
lating them back to the geographical space. Furthermore, the 
results of DMC analyses can be used to guide future botanical 
explorations and practical fieldwork, making new sampling in geo‐
graphical and climate spaces cost‐efficient.

5.	 Including both the DMC metrics as covariates in any model with 
species as the observational unit may help to account for poten‐
tial confounding effects due to the varying sampling coverage of 
the sampled species distribution within both the climatic and geo‐
graphic space. Since DMC values are species‐specific, they can 
be included as weights in macro‐ecological analyses and models, 
where well‐represented species might be weighted higher than 
less‐well represented species. Nevertheless, it might be neces‐
sary to apply re‐sampling methods (Lengyel, Chytrý, & Tichý, 
2011) to prevent spatial autocorrelation in model residuals.
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