
Journal of Ecology. 2024;00:1–21.	﻿�   | 1wileyonlinelibrary.com/journal/jec

Received: 18 January 2024 | Accepted: 8 August 2024

DOI: 10.1111/1365-2745.14403  

R E V I E W

G r i m e  R e v i e w :  H o w  D o  S p e c i e s  D i s t r i b u t i o n  M o d e l s  R e f l e c t  a n d  I n f o r m  E c o l o g i c a l  P r o c e s s e s ?

Incorporating effects of habitat patches into species 
distribution models

Federico Riva1  |   Caroline Jean Martin2  |   Carmen Galán Acedo3  |    
Erwan Nicolas Bellon2  |   Petr Keil4  |   Alejandra Morán-Ordóñez2,5,6  |   
Lenore Fahrig3  |   Antoine Guisan2,6

1Environmental Geography Department, Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; 2Department of 
Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; 3Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton 
University, Ottawa, Ontario, Canada; 4Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, 
Czech Republic; 5Conservation Biology Division, Institute of Ecology and Evolution (IEE), Universität de Bern, Bern, Switzerland and 6Faculty of Geosciences 
and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Author(s). Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Correspondence
Federico Riva
Email: f.riva@vu.nl

Funding information
HORIZON EUROPE European Innovation 
Council; H2020 European Research 
Council, Grant/Award Number: 
101044740 and 101024579; Grantová 
Agentura České Republiky, Grant/Award 
Number: GAČR 24-14299L; Biodiversa + 
Prioritice Project, Grant/Award Number: 
31BD30_209629

Handling Editor: David Armitage

Abstract
1.	 Species distribution models (SDMs) are algorithms designed to infer the distri-

bution of species using environmental and biotic variables and have become an 
important tool for ecologists and conservation biologists seeking to understand 
the implications of environmental change.

2.	 Global datasets of environmental variables at resolutions of a few metres are in-
creasingly available. SDMs fitted using such high-resolution data allow research-
ers to investigate how local factors affect species occurrences at unprecedented 
fine spatial scales.

3.	 As the spatial resolution of SDMs increases, we see a critical need to consider 
the characteristics of habitat types within or around raster pixels. In particular, 
we argue that the effects of habitat patches (EHPs, including habitat area, habi-
tat configuration, and habitat diversity), measured focusing on patches or land-
scapes, have yet to be fully realized in SDMs.

4.	 We provide guidelines to incorporate EHPs in SDMs. We explain why this devel-
opment is important, describe approaches to properly conduct such analyses, and 
discuss pitfalls we foresee in testing EHPs.

5.	 Synthesis. Ensuring that SDMs incorporating EHPs are properly designed will be 
key to increasing model predictive performance and to understanding which en-
vironmental factors influence the distribution of species at fine spatial scales. 
At a crucial time for nature conservation, we foresee that this will be a key step 
forward to understanding and protecting biodiversity.

www.wileyonlinelibrary.com/journal/jec
mailto:
https://orcid.org/0000-0002-1724-4293
https://orcid.org/0000-0002-8290-2096
https://orcid.org/0000-0002-2333-5810
https://orcid.org/0009-0003-1692-2042
https://orcid.org/0000-0003-3017-1858
https://orcid.org/0000-0002-5815-6089
https://orcid.org/0000-0002-3841-0342
https://orcid.org/0000-0002-3998-4815
http://creativecommons.org/licenses/by-nc/4.0/
mailto:f.riva@vu.nl
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2745.14403&domain=pdf&date_stamp=2024-08-30


2  |    RIVA et al.

1  |  INTRODUC TION

‘How many species are there on Earth?’, ‘where do they live?’, and 
‘why there?’ are some of the simplest, yet most difficult questions 
to answer in the environmental sciences (Hutchinson, 1959; Mateo 
et al., 2017; Rahbek et al., 2019). Answers to these questions remain 
elusive because biodiversity data are sparse across most of Earth 
and for most species (Hortal et  al.,  2015). One approach devel-
oped to bypass these knowledge shortfalls are species distribution 
models (‘SDMs’; also called ecological niche models, habitat suit-
ability models, or other terms, Guisan et al., 2017), tools designed 
to understand the distributions of species and to generate predic-
tive maps of such distributions (Elith & Leathwick,  2009; Guisan 
& Zimmermann,  2000). Most SDMs are mathematical models de-
signed to link environmental conditions, usually represented using 
categorical or continuous raster data (Lechner et al., 2012; Riva & 
Nielsen, 2020), with biodiversity data, usually represented by spatial 
occurrence or abundance records (Figure 1). These links, formalized 
in niche theory (Hutchinson, 1957), are a staple of biogeography (the 
‘realized niche’, Colwell & Rangel, 2009; Guisan et al., 2017; Soberon 
& Peterson, 2005) and inspired many SDM approaches (Devarajan 
et al., 2020; Guillera-Arroita, 2017; Norberg et al., 2019; Waldock 
et al., 2022).

Application and diffusion of SDMs have been facilitated by the 
development of new methods (Guillera-Arroita,  2017; Norberg 

et  al.,  2019; Uribe-Rivera et  al.,  2023) and of guidelines to prop-
erly implement such methods (Araújo et al., 2019; Feng et al., 2019; 
Merow et al., 2014; Zurell et al., 2020), by the need to bypass bio-
diversity knowledge shortfalls in conservation (Guisan et al., 2013; 
Kukkala & Moilanen, 2013; Pollock et al., 2017), and by increasingly 
available data on biodiversity (Besson et al., 2022; Hartig et al., 2023; 
Pollock et al., 2020) and the environment (Jetz et al., 2019; Wulder 
et al., 2022). Data availability has recently made important strides: 
for instance, the Global Biodiversity Information Facility currently 
hosts ~3 billion openly available records, and a map of global tree 
canopy height at a 10-m resolution was recently published (Lang 
et al., 2023).

This availability of large-scale, high-resolution data opens both 
opportunities and challenges in SDM research. Analyses based on 
high-resolution data allow a better understanding of the mecha-
nisms determining the distribution of species (Haesen et al., 2023; 
Randin, Engler, et  al.,  2009), but they also relate to spatial do-
mains—and thus ecological processes—that have not been tradition-
ally considered in SDMs. Due to physiological constraints (Briscoe 
et al., 2023; Lenoir et al., 2020), at coarse spatial resolutions (gen-
erally >100 km × 100 km) climate is often a major determinant of 
species distributions (Johnson,  1980; McGill,  2010; Pearson & 
Dawson,  2003). Conversely, at finer spatial resolutions (generally 
<10 km × 10 km), the signature of other processes beyond climatic 
constraints appears more clearly (Johnson,  1980; McGill,  2010; 

K E Y W O R D S
environmental niche models, habitat fragmentation, habitat heterogeneity, habitat loss, habitat 
suitability models, land use change, landscape ecology, patch area, scale of effect, spatial scale

F I G U R E  1  Species distribution models (SDMs) are a family of algorithms designed to infer the distributions of species from the 
association between biodiversity data (top-left) and environmental gradients (bottom-left). In the proposed example, a plant species (yellow 
flower) inhabits forests at higher elevations. A typical SDM could be used to predict the probability of occurrence of this species (bottom-
right) based on temperature, precipitation, and forest cover, as well as the importance of these factors in explaining its distribution, outlining 
its ‘realized niche’ (top-right).
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    |  3RIVA et al.

Pearson & Dawson,  2003), particularly fine habitat associations. 
While environmental variables approximating habitat associations 
are increasingly available to be incorporated in SDMs, changes in 
land use and land cover remain overlooked when fitting SDMs and 
when assessing biodiversity scenarios (Mod et  al.,  2016; Titeux 
et al., 2016).

In this context, we focus on the importance of land cover pat-
terns—and especially their ‘patchiness’ (Figure  2; Table  1)—for the 
distribution of species. A long tradition of studies in ecology and 
conservation demonstrates that patterns in area, configuration, and 
diversity of habitat patches can influence changes in biodiversity 
(Fahrig et al., 2022; Laurance, 2009). For instance, the size of habitat 
patches assessed, the cumulative area of habitat in a landscape, and 
the diversity of habitats in a landscape can increase the local occur-
rence and abundance of species (Anderson et al., 2023; Fahrig, 2017; 
Heegaard et al., 2007; Keinath et al., 2017; Stein et al., 2014). We 
broadly refer to these diverse effects as ‘effects of habitat patches’ 
(‘EHPs’), because testing for them in SDMs is intuitive when con-
ceptualizing landscapes as containing discrete patches of habitat 
(McGarigal & Cushman, 2002; Turner, 1989) (Figure 3).

Tests of the importance of variables representing EHPs in SDMs 
are rare despite extensive empirical evidence of their relationships 
with the distribution of species (see below). An overview of the lit-
erature found that only a small portion of articles on SDMs mention 
words related to EHPs in their abstract. Based on a search con-
ducted on 11 November 2023 on the Web of Science platform from 
the University of Lausanne, the 1000 most-relevant papers to the 
string ‘species distribution model*’ mention the words ‘patch’, ‘patch 
area’, ‘patch size’, ‘fragmentation’, or ‘habitat area’ only 71 times (27, 
0, 4, 34, and 6 times, respectively). In comparison, the word ‘climate’ 

appears 1237 times. There is therefore broad potential for address-
ing knowledge gaps around the importance of EHPs in SDMs. This 
review is designed to facilitate efforts in this direction.

We stress that incorporating categorical land cover data as pre-
dictors in SDMs is not, by itself, sufficient to test for EHPs (Figure 4). 
When incorporating land cover data as covariates in SDMs, authors 
usually link biodiversity data with individual raster pixels to either 
the land cover type in which a pixel containing the species observa-
tion is classified, or to the proportion of a land cover type of inter-
est within the pixel (Figure 4, ‘Assumptions of typical SDMs’). While 
these approaches recognize the importance of habitat associations 
for SDMs, they might be inadequate because they assume that EHPs 
do not matter. For instance, they assume that it does not matter 
whether a pixel of habitat exists separated from other pixels versus 
within a larger habitat patch, or whether habitat exists continuous 
versus fragmented within a pixel. Alternatively, one could measure 
the sizes of the habitat patches containing the pixels where the spe-
cies observations are made, or the number of patches in which a 
given habitat area exists inside the pixels; inclusion of these vari-
ables in SDMs would allow testing patch size and habitat fragmenta-
tion effects (Figure 4, ‘Example of neglected EHPs’). More broadly, 
a limitation of many SDMs—particularly high-resolution SDMs—is 
that variables describing the properties of habitat patches within, 
around, or surrounding individual pixels (Figure  5) are not consid-
ered, even though ecologists have demonstrated that such variables 
often matter in determining the distribution of species.

Here, to resolve this shortcoming, we describe how to test the 
potential relevance of EHPs to SDMs. Our hope is that authors in-
terested in SDMs will consider whether incorporating variables 
representing EHPs (i.e., metrics capturing the area, configuration, 

F I G U R E  2  A ‘patch’ is an area with relatively homogeneous environmental conditions in comparison to its surroundings. For instance, 
clusters of trees can be described as forest patches (but not all trees fall within forest patches; left). Measures of habitat patches have 
played an important role in ecology and conservation, particularly through the discovery of effects of the characteristics of patches (red; 
top-right) and of landscapes (blue; bottom-right). We refer to such effects as effects of habitat patches (EHPs). Many metrics have been 
tested when assessing EHPs; we show here three categories of metrics (area, configuration, and diversity) and how they differ depending 
on the observational units (patches or landscapes) (Table 1). We illustrate these categories showing variation in patch size and edge length 
(properties of patches), habitat area, number of forest patches—a metric of habitat fragmentation—and thematic diversity (properties of 
landscapes); see the text for many other examples. Here, green polygons represent forest patches and yellow shading represents a matrix of 
grassland.
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4  |    RIVA et al.

and diversity of habitat patches; Table 1; Figure 2) might provide in-
sights into their system of interest, and when this is the case, they 
will properly test whether such variables should be included in their 
analysis. Specifically, we distinguish four approaches to study EHPs 
in SDMs based on metric type (metrics of patch vs. landscape char-
acteristics) and assumption on habitat characteristics in relation to 
grain of analysis (raster pixels assumed to contain homogeneous vs. 
heterogeneous habitat) (Figure  5). In the Figures and Table  2, we 
refer to the four approaches as (H1) homogeneous habitat within 
pixels × metrics of patch characteristics around the pixel; (H2) homoge-
neous habitat within pixels × metrics of landscape characteristics sur-
rounding the pixel; (C1) heterogeneous habitat within pixels × metrics 
of landscape characteristics within the pixel; (C2), heterogeneous habi-
tat within pixels × metrics of landscape characteristics surrounding the 
pixel. These different combinations of data and metric types can be 
used to address different ecological questions, testing for different 
EHPs (Table 2), with high-resolution data allowing testing for effects 
of both the characteristics of patches and landscapes containing bio-
diversity data (Figures 5 and 6). We facilitate these tests by detailing 
why they matter, by providing an overview of what they require, and 
by highlighting pitfalls in this process. Box 1 summarizes critical con-
cepts for the rest of the review.

2  |  WHAT IS A PATCH OF HABITAT,  AND 
WHAT IS A L ANDSC APE?

Discussing EHPs first requires defining ‘patches’, ‘habitats’, and 
‘landscapes’ (Box  1; Figures  2 and 3). A ‘patch’ is an area that is 
relatively homogeneous in comparison to its surroundings, and 

that can be therefore conceptualized as a discrete environmen-
tal unit (Fahrig,  2013; Turner,  1989). A ‘habitat’ is an environment 
capable of sustaining populations of a species of interest because 
it provides the species with the resources needed for its survival 
and thriving (Kearney, 2006). A ‘landscape’ is a heterogeneous area, 
where the ecological question of interest determines the scale of 
that area and description of that heterogeneity (Arroyo-Rodríguez & 
Fahrig, 2014; Turner, 1989). Many landscapes host habitat that ex-
ists naturally patchy, such as oases in deserts (Tydecks et al., 2023), 
wetlands surrounded by terrestrial lands (Deane et al., 2017), and la-
custrine islands (MacDonald et al., 2018), or that exist patchy due to 
humans, such as forest remnants within agricultural lands (Decocq 
et al., 2016) and green areas within cities (La Sorte et al., 2023).

In addition to being respectively homogeneous and hetero-
geneous in terms of habitat, other aspects separate patches from 
landscapes. The size of patches typically varies, whereas the size 
of a landscape remains constant within a given application. Habitat 
patches are also species-specific entities (e.g., forests can be habitat 
patches for a woodpecker or a liana species, but not for most grass-
hopper species) whereas landscapes usually host species associated 
with different habitat types. Pragmatically, dominant vegetation 
types are often used to delineate habitat patches within landscapes 
(Clements, 1916; Pickett & White, 2013; Riva & Nielsen, 2020). Our 
suggestions apply to any mosaic of discrete habitat patches; we will 
often refer to habitat patches defined using categorical land cover 
raster data generated with remote sensing approaches (McGarigal & 
Cushman, 2002; Riva & Nielsen, 2021; Turner, 1989).

Like any abstraction of natural systems, these concepts 
have limitations (Coops & Wulder,  2019; Fahrig,  2013; Riva & 
Nielsen, 2020). In some cases, a ‘gradient’ model that represents 

TA B L E  1  Metrics developed to assess properties of patches and landscapes related to the effects of habitat patches. Comprehensive 
reviews of these metrics and of their properties include Turner (1989) and Wang et al. (2014). See also Hesselbarth et al. (2019), and the 
manual for the software FRAGSTATS at https://​www.​frags​tats.​org/​index.​php/​docum​entation.

Observational unit Type of measurement Metric Description

Patches Area Patch size Area of a patch (in hectares)

Core area Core area of a patch based on specified edge 
depths (in hectares)

Configuration Edge length Perimeter of a patch (in metres)

Fractal dimension Equals two times the logarithm of patch perimeter 
(in metres) divided by the logarithm of patch area 
(in square metres)

Landscapes Area Habitat area Sum of the areas of all habitat patches in the 
landscape (in hectares)

Fractal dimension Equals two divided by the slope of regression line 
obtained by regressing the logarithm of patch 
area (in square metres) against the logarithm of 
patch perimeter (in metres)

Configuration Number of patches Total number of patches in the landscape

Total edge length Sum of the lengths of all edge segments in the 
landscape (in metres)

Thematic diversity Land use and land cover 
heterogeneity measured with the 
Shannon index

Equals minus the sum, across all habitat types, of 
the proportional abundance of each habitat type 
multiplied by that proportion

 13652745, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14403 by C

zech U
niversity of L

ife Sciences in Prague, W
iley O

nline L
ibrary on [06/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.fragstats.org/index.php/documentation


    |  5RIVA et al.

continuous variation in a factor of interest over a landscape (e.g., 
canopy height across a region) (McGarigal & Cushman, 2005), or 
a ‘hybrid’ model that includes continuous information within dis-
crete patches (e.g., canopy height measured only within forest 
patches based on a land cover map) (Brudvig et  al.,  2017), more 
properly capture the relevant environmental gradient (Coops 
& Wulder,  2019; Riitters & Vogt,  2023). Even when a categori-
cal landscape model is appropriate, inference can be challenging 
because patches are often dynamic (Driscoll et al., 2021; Pickett 
& White,  2013) and their delineation involves arbitrary choices 
(Fahrig, 2013). Despite these limitations, extensive empirical ev-
idence summarized in the next section strongly supports EHPs 
(Figure  3). The habitat patch concept has been instrumental in 
the development of ecological theory, such as the hierarchical 
patch model (Newman et al., 2019; Wu & Loucks, 1995) and meta-
population theory (Hanski,  1998; Levins,  1969), and it has been 
used in management and practice (Pickett et al., 2009; Pickett & 
White,  2013). On-the-ground applications include conservation 

principles (Diamond,  1975) and minimum patch area thresholds 
(Riva & Fahrig, 2023b) in habitat protection policies. Widespread 
use suggests the value of the patch concept, and thus incorpo-
rating variables representing EHPs in SDMs has the potential to 
reveal useful information about species' ecological requirements 
and distributions.

3  |  EMPIRIC AL SUPPORT FOR EHPs

Much empirical evidence suggests the existence of EHPs (Figure 3). 
For instance, positive effects of patch area on biodiversity and 
the occupancy of species have been found across hundreds of 
taxa and disparate ecosystems (Keinath et al., 2017; MacArthur & 
Wilson, 1967; Prugh et al., 2008). Similarly, approximately one-third 
of studies of fragmentation ‘per se’ revealed significant effects of 
habitat configuration independent from its area (Fahrig,  2017). 
Such effects might be relevant for SDMs because associated with 

F I G U R E  3  Many ecological studies suggest that observations obtained within a patch can respond to properties of that patch (effects 
of patch characteristics) and that observations obtained within a patchy landscape can respond to properties of that landscape (effects of 
landscape characteristics). The objective of this review is to facilitate the integration of such effects of habitat patches in species distribution 
models. Red lines outline patches measured to assess the effects of patch characteristics, whereas blue circles represent landscapes 
measured to assess the effects of landscape characteristics. The thick, blue circle represents the ‘scale of effect’, that is, the extent at which 
a metric of a landscape characteristic of interest better predicts the occupancy of this illustrative species. Black squares with letters (i.e., H1, 
C1, C2) refer to the different approaches described in Figure 5.
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6  |    RIVA et al.

changes in the distribution of species in pixels existing within larger 
patches (Figure 5, H1), in pixels containing continuous rather than 
fragmented habitat (Figure 5, C1), and in pixels surrounded by con-
tinuous rather than fragmented habitat (Figure 5, C2).

Because the data available for an analysis determine which EHPs 
can be tested in different SDM applications (Figure 5), it is important 
to consider how previous results in the literature translate to tests 
of EHPs in SDMs. For instance, while larger patches tend to host 
more species, one manifestation of the species–area relationship 
(Matthews et al., 2021), it is not obvious that a raster pixel located 
in a larger patch should always contain more species than a raster 
pixel located in a smaller patch, because all raster pixels have the 
same area. Indeed, turnover among pixels located within patches 
can determine higher species richness in larger patches, even when 

the number of species found within individual pixels does not re-
spond to the size of the patches containing such pixels (Riva, Pierre, 
et al., 2024). The question then is how patch size moderates species' 
responses to the presence of habitat in SDMs. When species have 
minimum patch area requirements below which they cannot persist 
(Marquet & Taper, 1998), then habitat pixels existing within patches 
smaller than these patch area requirements must differ in suitability 
from pixels existing in larger patches of habitat. Large patches also 
tend to have larger populations, decreasing extinction risk (Storch 
et  al.,  2018), which might increase suitability as estimated by the 
SDM. Despite these well-known relationships, tests of the impor-
tance of EHPs in SDMs have been to date lacking. This might cause 
us to miss opportunities to increasing the accuracy of SDMs and for 
understanding the EHPs.

F I G U R E  4  Typically, species distribution models (SDMs) do not include variables measured to account for the effects of habitat patches 
(EHPs). This is illustrated here with two examples in the central column, ‘Assumptions of typical SDMs’. Whether EHPs are relevant can be 
tested by incorporating in the SDM variables measured to represent properties of patches and/or landscapes hypothesized to influence 
the species of interest via EHPs. For instance, the suitability of a forest pixel might differ depending on whether that forest pixel is located 
in a small or in a large forest patch, and the suitability of a pixel might differ depending on whether the habitat that it contains exists 
continuously or is fragmented into several smaller patches. These two examples are illustrated in the right column, ‘Example of neglected 
EHPs’.
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    |  7RIVA et al.

3.1  |  EHPs in patch ecology and landscape ecology

Key for understanding how EHPs might influence SDMs is recog-
nizing connections with extensive work conducted by ecologists. 
Two general categories of analysis are important for testing EHPs 
in SDMs: ‘patch ecology’ and ‘landscape ecology’ studies (Figure 3).

‘Patch ecology studies’ link observations obtained within a 
patch with properties of that patch, such as patch area (Heegaard 
et al., 2007) or shape (Burchell, 2012) (Figure 3). They identify ‘ef-
fects of patch characteristics’, that is, evidence that observations 
obtained within a patch respond to properties of that patch. Patch 
ecology studies have a long tradition that precedes the availability 
of remote sensing products (Keinath et al., 2017; Prugh et al., 2008). 
They typically assume a limited role in study extent, landscape 
moderation of local patterns, or climatic heterogeneity. An import-
ant example is studies testing Island Biogeography Theory for the 
conservation of terrestrial ecosystems (MacArthur & Wilson, 1967), 
which find that larger and more connected patches tend to host 
more species (Laurance, 2008; Matthews et al., 2021). Other exam-
ples are ecosystem decay, the observation that standardized biodi-
versity samples from larger patches have higher biodiversity than 
the same-sized biodiversity samples from smaller patches (Chase 

et al., 2020), and minimum patch size effects, when patches smaller 
than a given area fail to support an ecological phenomenon of inter-
est (Marquet & Taper, 1998).

‘Landscape ecology studies’ link observations from within a 
landscape with properties of that landscape, such as habitat 
amount (Watling et al., 2020) or fragmentation (Fahrig, 2017), and 
evaluate ‘effects of landscape characteristics’, that is, evidence 
that observations obtained within a landscape respond to prop-
erties of that landscape (Figure 3). In this view, landscape charac-
teristics are associated with each observational unit. Such units 
of observation are usually plots or patches in the centre of each 
landscape (Figure  5), or alternatively, measured at multiple sites 
across each landscape (Arroyo-Rodríguez & Fahrig, 2014; Jackson 
& Fahrig,  2015). Landscape ecology studies expanded on patch 
ecology studies by incorporating landscape moderation of local 
patterns, or landscape context effects (Tscharntke et al., 2012), in-
creasing their spatial domain while continuing to assume no effects 
of climate on the ecological response of interest across the study 
extent. Examples of landscape ecology studies include assess-
ments of the effects of habitat fragmentation per se (Fahrig, 2017; 
Fahrig et al., 2022), which suggest limited effects of habitat exist-
ing continuous or fragmented after controlling for habitat area, 

F I G U R E  5  The spatial resolution of environmental data available dictates which type of metrics related to effects of habitat patches 
(EHPs) can be adopted in species distribution model (SDM) applications. Effects of patch characteristics can be measured mostly in 
high-resolution SDMs (H1), because they require assuming that all pixels are homogeneous in terms of the habitat type that they contain. 
Conversely, within-pixel habitat properties are more typical of coarse-resolution SDMs (C1), where it is reasonable to assume that pixels 
contain different habitat types. The multi-scale local landscape approach (see Figure 3) is feasible with both high- and coarse-resolution 
habitat data (H2, C2).

 13652745, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14403 by C

zech U
niversity of L

ife Sciences in Prague, W
iley O

nline L
ibrary on [06/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8  |    RIVA et al.

TA B L E  2  Outstanding questions that can be answered by incorporating the effects of habitat patches (EHPs) in species distribution 
models (SDMs). We assume all SDMs to include the effects of climatic variables and thus focus in this table on the part of the SDM designed 
to assess EHPs.

Themes of relevance Outstanding questions Approaches Type of data (see Figure 5)

Area-based biodiversity 
conservation

For how many species are 
there minimum patch area 
requirements? And how small 
are the smallest viable habitat 
patches for different species?

Evaluate support for SDMs including the 
area of the habitat patches containing 
biodiversity data as a covariate. The 
presence of ‘minimum patch area 
requirements’ (patch areas below which 
species populations collapse) can be 
tested with approaches designed to 
identify ecological tipping points in 
statistical modelling, for example, with 
‘Threshold’ and ‘Hinge’ features in 
Maxent. Accounting for habitat area 
measured in surrounding landscapes 
while conducting these tests is key to 
avoid confounding effects of patch size 
with habitat amount effects

Requires the assumption that pixels 
contain homogeneous habitat (H1, 
H1 + H2)

Area-based biodiversity 
conservation

Does it matter if a certain 
amount of habitat area exists 
continuous or fragmented, 
that is, in a few large patches 
instead of in several small 
patches?

Compare models that predict the 
distribution of species in response to (i) 
habitat area measured as a landscape 
property, and (ii) habitat area and 
habitat fragmentation (i.e., the number 
of patches in which the habitat exists) 
measured as landscape properties. If 
the first model performs as well as the 
second, then there is no support for 
habitat fragmentation effects

Can be tested with data 
assuming habitat homogeneous 
or heterogeneous within pixels 
(H1 + H2, C1, C1 + C2)

Management of working 
landscapes

How do the effects of 
environmental heterogeneity 
vary across spatial scales, and 
how does this change across 
systems?

Fit SDMs that assess the effects of 
heterogeneity of land cover classes 
around or surrounding biodiversity data 
at different grains of analysis (pixel size) 
and/or different landscape sizes

Can be tested with data 
assuming habitat homogeneous 
or heterogeneous within pixels 
(H1 + H2, H2, C1, C1 + C2)

Theory development Do EHPs persist when 
considering pixels as 
observational units instead 
of considering traditional 
observational units in ecology 
(e.g., plots or patches)?

Use previously published datasets that 
contain spatially explicit biodiversity 
data and demonstrated EHPs with 
traditional approaches, to test for the 
same EHPs with SDMs

Can be tested with data assuming 
habitat homogeneous or 
heterogeneous within pixels (H1, 
H1 + H2, C1, C1 + C2)

Theory development How important are EHPs 
in comparison to climatic 
gradients, and how does this 
vary depending on the grain 
and extent of a study?

Test for the effect of different 
characteristics of patches and 
landscapes (e.g., patch size, habitat 
amount) at different raster grainsEf and 
study extents, and evaluate when such 
effects are relevant for the distribution 
of species. EHPs should become 
negligible at coarse spatial grains, but at 
which spatial domain this change occurs 
remains unclear

Can be tested with data assuming 
habitat homogeneous or 
heterogeneous within pixels (H1, 
H1 + H2, C1, C1 + C2)

Biodiversity knowledge 
shortfalls

What is the habitat for a 
poorly known species?

Evaluate support for SDMs 
parameterized with the same climatic 
variables, but different thematic 
resolutions of land cover classes (e.g., 
anthropogenic vs. natural land cover; 
anthropogenic vs. forest vs. grassland; 
urban vs. agricultural vs. forest vs. 
grassland, etc.). If one habitat type 
predicts well the distribution of a 
species, that habitat type approximates 
the real habitat of that species

Can be tested with data assuming 
the habitat homogeneous or 
heterogeneous within pixels (H1, 
H1 + H2, C1, C1 + C2)
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    |  9RIVA et al.

and tests of the habitat amount hypothesis (Fahrig, 2013), which 
suggest that species richness at a sampling site might be predicted 
by surrounding habitat area at least as well as by the combined 
effects of size and isolation of the patch containing the sampling 
site (Watling et al., 2020).

In SDMs, the relevance of both EHP types can be tested 
and could matter in addition to topographic and climatic ef-
fects (Figures  1 and 6). Separating the effects of patch versus 
landscape characteristics is important because the implications 
of the two are fundamentally different (Arroyo-Rodríguez & 
Fahrig, 2014; Fahrig, 2023; Riva & Fahrig, 2023a), but can be chal-
lenging because of overlaps in concepts and spatial domains (see 
‘Section 5’ below). Studies designed to account for EHPs in SDMs 
might require consideration of both metrics of patch and land-
scape characteristics, which is possible only with high-resolution 
environmental data (Figures 5 and 6), and particular care to avoid 
confusing the two.

4  |  ACCOUNTING FOR EHPs IN SDMs

Accounting for EHPs in SDMs requires first including as covari-
ates in the SDMs some relevant properties of the patches and/or 
landscapes relevant to the species data analysed, and then testing 
whether such properties are important to explain the distribution 
of the species. We summarize this process in four steps, illustrated 
in Figure 6 with an example based on high-resolution environmental 
and biodiversity data.

4.1  |  Choose a conceptual model representing 
habitat patches relevant to the study system

Previous knowledge of a system is important when deciding 
which conceptual model is appropriate to represent the study 
area (Figure  6, step 1). A binary, ‘habitat/non-habitat’ conceptual 

F I G U R E  6  Testing the effects of habitat patches (EHPs) in species distribution models requires considering climatic and land cover 
patterns that potentially affect the distribution of a species. We detail on the left four steps necessary for proper tests of EHPs (see text for 
details), and on the right, the illustrative case of a forest-dwelling epiphyte, modelled with high-resolution data. This hypothetical species 
persists only when temperatures are high and at least 20% of the surrounding landscape is occupied by forest. To test EHPs, researchers 
must select a proper conceptual model (step 1), select metrics of characteristics of patches and/or landscapes (step 2), measure those 
characteristics (step 3), and test if they are related to the distribution of the species (step 4). On the right side, green areas represent forest 
patches; golden dots represent sampling sites where the species was present, whereas golden crosses represent sampling sites where the 
species was absent; red lines represent the patches containing sampling sites, for which patch area was measured; blue circles represent 
the extents at which landscape habitat area and fragmentation were assessed for each biodiversity sample, with dotted lines showing lower 
support, and one solid line showing the supported scale of effect (see Figure 3); the pink-to-white shade in the background represents a 
temperature gradient across the study area.
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10  |    RIVA et al.

model might suffice when focusing on species known to use spe-
cific land cover categories, whereas landscape conceptual models 
accommodating many land cover categories can be used to assess 
relationships between the occurrence of species and landscape het-
erogeneity. For instance, some alpine plant species can respond to 
patch size (Dullinger et al., 2011; Rixen et al., 2022), the amount of 
natural land cover helps predict the distribution of rare plant spe-
cies (Rose et  al.,  2023), the distribution of invasive plants can be 
positively affected by landscape heterogeneity (O'Reilly-Nugent 
et al., 2016), and area of forest, but not fragmentation, affects re-
cruitment of tree species (Arasa-Gisbert et al., 2021). Properly de-
fining what are relevant habitat patches for different species is key 
to unveiling these relationships, and thus requires selecting appro-
priate conceptual models. Note that, in some cases, EHPs are not 
necessary because the mere classification of pixels in different land 

cover categories (Figure 4, central column in top row) explains the 
distribution of some species well (Gábor et al., 2022).

How to: The choice of a proper conceptual model should be 
grounded in knowledge of the system under investigation (i.e., 
species' natural histories and study area characteristics) and 
more broadly in ecological reasoning (Popovic et al., 2024; Riva & 
Nielsen, 2020, 2021). Some resources to assign habitat types to dif-
ferent species are already available and can facilitate assessments of 
EHPs. These include species–habitat association registries that syn-
thesize expert knowledge, some of which have been compiled by or-
ganizations involved in conservation such as the International Union 
for Conservation of Nature (IUCN) (Cazalis et al., 2022), and some in 
studies and reports (European Environment Agency, 2024; Kattge 
et  al., 2020; Tobias et al., 2022; van Swaay et al., 2006). Museum 
specimens along with information on the habitat type in which they 

BOX 1 Key concepts for navigating the review

Scale: General term representing the spatial and/or temporal domains of a study. It is usually composed of two components, grain, 
and extent.

Extent: The boundaries containing the observations analysed. In SDMs, the spatial extent is the area across which species are mod-
elled and suitability maps created.

Grain: The size of the observational unit considered in the analysis. In SDMs, the spatial grain is the size of the raster pixel (or cell) 
used to infer environment–species relationships.

Spatial resolution: The accuracy of spatial data used in the analysis. In SDMs, the source data resolution can be finer than grain, for ex-
ample, an author might summarize land cover data available at a 25 m resolution to a 1 km resolution to match available climatic data.

Habitat: The physical and biotic factors that support the survival and reproduction of a particular species.

Patch: An area that differs substantially from its surroundings for an attribute of interest (e.g., vegetation), and that can therefore be 
considered as a homogeneous, discrete unit.

Landscape: A heterogeneous area, where the particular ecological question determines the scale of the area (grain and extent) and 
description of that heterogeneity.

Metapopulation and metacommunity: A set of populations linked by the dispersal of individuals, and a set of communities linked by 
the dispersal of multiple interacting species. Both can persist in a dynamic balance of extinctions and colonisations in a landscape 
containing habitat patches.

Landscape moderation: The idea that the properties of a landscape surrounding a sampling site can affect ecological patterns and 
processes within that sampling site.

Scale of effect: The spatial extent within which the surrounding landscape pattern most strongly affects an ecological response at the 
centre of that landscape.

Effects of properties of patches: Effects of predictor variables measured as properties of patches. For instance, the probability of a spe-
cies to be observed in a raster pixel might be higher when that pixel is within a larger than smaller habitat patch. See H1 in Figure 5.

Effects of properties of landscapes: Effects of predictor variables measured as properties of landscapes. For instance, the probability 
of a species being observed in a raster pixel might be higher when that pixel is surrounded by a landscape containing more habitat or 
higher heterogeneity of land cover types, or when that pixel contains more habitat or higher heterogeneity of land cover types. See 
H2, C1, and C2 in Figure 5.

Effects of habitat patches (EHPs): The effect of properties of habitat patches, and/or of properties of landscapes, on an ecological 
response of interest. EHPs are therefore a general category that encompasses both effects of properties of patches and landscapes 
described above.
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    |  11RIVA et al.

were collected might also be used to infer species–habitat associ-
ations (Jones et al., 2024). When prior information is not available, 
it might be possible to infer species–habitat associations based on 
preliminary analyses (Table 2).

4.2  |  Select relevant metrics to represent EHPs

The next step is selecting characteristics of patches and land-
scapes that are representative of EHPs of interest (Figure  6, step 
2). Because tens of metrics have been developed to characterize 
both patches and landscapes (Hesselbarth et al., 2019; Turner, 1989; 
Wang et al., 2014), one should again pick those that are relevant for 
the system studied based on their understanding of the system itself 
and on the study hypotheses. For instance, forest epiphytes must 
live in forests and might respond to forest continuity (Wierzcholska 
et  al.,  2020). Therefore, when modelling the distribution of these 
taxa, one could measure the sizes of the forest patches contain-
ing biodiversity sample plots, the total forest area in landscapes 
surrounding such plots, and the spatial configuration of that for-
est area in surrounding landscapes. Simultaneously testing for the 
effects of all three metrics will allow for a better understanding of 
which of these are important for the distribution of forest epiphytes 
(Figure 6).

How to: To select relevant metrics, one can either make predic-
tions based on potential mechanisms affecting the system of inter-
est and then measure variables representing EHPs related to such 
mechanisms, or explore variables that have been shown to be im-
portant in most systems. For instance, if changes in microclimates 
are known to influence a given species, then incorporating in the 
SDM measures of habitat edges could improve model performance 
because habitat edges usually differ in microclimate from ‘core’ hab-
itat (Haesen et al., 2023). On the other hand, habitat area is typically 
an important factor in explaining the distribution of species, and one 
might include this variable by default. In fact, because area of habitat 
is one of the fundamental factors affecting both species occupancy 
and biodiversity (Fahrig, 2013; Matthews et al., 2021), we suggest 
that any EHPs related to the properties of a species' habitat should 
be assessed together with metrics representing total habitat area. If 
not, the risk is for a metric correlated to habitat area to capture both 
the ubiquitous effects of habitat area and other relevant properties 
of patches or landscapes (Wang et al., 2014), generating artefactual 
results that confound habitat area with such properties. We propose 
in Table 1 a few influential metrics that represent reasonable starting 
points for tests of EHPs in SDMs.

4.3  |  Measure the selected characteristics of 
patches and landscapes

Next, authors should measure the properties of patches and land-
scapes identified as potentially relevant for analysis (Figure 6, step 

3). When it is possible to fit high-resolution SDMs, one can meas-
ure variables describing both patches and landscapes surrounding 
every pixel/observation (Figure 5, H1 and H2). Conversely, when 
only coarse-resolution SDMs are possible, one can typically meas-
ure only landscape characteristics (Figure  5, C1 and C2). This is 
because the assumption of habitat homogeneity within pixels is 
usually unreasonable with coarse-resolution environmental data. 
Metrics of patch characteristics (red lines in Figures  2, 3, 5, and 
6) are calculated once for a given pixel, with every pixel being 
contained only in a given patch (Figure  5, H1), whereas metrics 
of landscape characteristics (blue lines in Figures  2, 3, 5, and 6) 
can be calculated inside coarse-resolution pixels, and at multi-
ple scales around both high-resolution and coarse-resolution 
SDMs (Figure 5, H2, C1, C2). When measuring landscape metrics 
in extents surrounding pixels (Figure 5, H2 and C2), such metrics 
should be measured at multiple scales, retaining in the final model 
the ‘scale of effect’ (Figure 3), that is, the scale that best explains 
the data (Jackson & Fahrig,  2015; Miguet et  al.,  2016; Scherrer 
et  al.,  2019; Vicente et  al.,  2014). Measurements of landscape 
characteristics around each observation with the ‘multi-scale local 
landscape design’ (Figure 3) are conducted in larger extents (spa-
tial units), such as buffers, moving windows, or cropped squares, 
sometimes by incorporating spatial weights that increase the im-
portance of environmental conditions near the biodiversity data 
locations (Bellamy et al., 2020; Miguet et al., 2017). The choice of 
the extent to which these metrics are measured can be informed 
by the ecology of the species assessed (Johnson, 1980), for exam-
ple, it has been proposed that reasonable scales of effect range 
between ~4 and 9 times the median dispersal distance of a spe-
cies (Jackson & Fahrig, 2012). More directions on how to measure 
properties of patches and landscapes can be found in the literature 
(Arroyo-Rodríguez & Fahrig, 2014; Bellamy et al., 2013; Freemark 
et  al.,  2002; Hesselbarth et  al.,  2019; Jackson & Fahrig,  2015; 
Miguet et al., 2016; Spake et al., 2019; Turner, 1989).

How to: Measuring variables related to EHPs requires geospatial 
data and tools to extract metrics representative of EHPs on such data. 
Many data sources for global remote sensing products have become 
available in recent years (e.g., https://​devel​opers.​google.​com/​earth​
-​engine/​datasets, https://​regis​try.​opend​ata.​aws/​tag/​earth​-​obser​va-
tion/​, https://​livin​gatlas.​arcgis.​com/​en/​home/​, https://​www.​earth​env.​
org/​, https://​land.​coper​nicus.​eu/​global/​, https://​www.​esa-​landc​over-​
cci.​org/​), such that the selection of appropriate data is today much 
more feasible than in the past. Once an appropriate dataset has been 
selected, several tools are openly available to measure the properties 
of habitat patches that can be linked to EHPs. These include the pack-
age landscapemetrics in the R software (Hesselbarth et al., 2019), the 
Patch Analyst extension in the ArcGIS® software, or the LandSCaPeN 
toolbox in Google Earth Engine.

We stress that biodiversity and environmental data should 
match both spatially and temporally when calculating metrics 
representing EHPs (Guisan et  al., 2017; Guisan & Thuiller, 2005). 
While all SDMs assume that the environmental covariates included 
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in the model are representative of the conditions experienced by 
the species, tests of EHPs require particular attention to timing 
mismatches because land cover change can occur very rapidly in 
comparison to climatic change. Authors should also consider po-
tential time lag effects of species responses to changes in habitat 
(e.g., extinction debt; Figueiredo et al., 2019). Temporal matching 
of biodiversity data with appropriate land cover data is now pos-
sible in most cases thanks to the increasing availability of global, 
longitudinal remote sensing products. Such products date back to 
the 1960s and are available at relatively high temporal resolutions 
(Berner et al., 2023; Munteanu et al., 2024), although older prod-
ucts are inevitably available at coarser grains, limiting applications 
(Figures 5 and 7).

4.4  |  Test support for EHPs in SDMs

Finally, every metric of interest should be included in a model to test 
whether there is support for the EHPs approximated by such metric 
(Figure 6, step 4). This requires comparing the importance of EHPs 
to other environmental variables and evaluating changes in model 
predictive performance. Support for EHPs can be based on assess-
ments of model coefficients (e.g., statistical significance or poste-
rior credible intervals), model selection criteria such as the Akaike 
information criterion (Burnham & Anderson,  2002), regularization 
(Merow et al., 2013), and similar covariate selection approaches. It 
is also important to assess the magnitude of the effects of EHPs in 
comparison to other variables, such as climatic and edaphic variables 
(Buri et al., 2020; Mod et al., 2016). Additionally, one can measure 
how much EHP variables improve model predictive performance 
compared with a model without them, or with them but randomized 
(Buri et al., 2020; Dubuis et al., 2013; Panchard et al., 2023; Randin, 
Jaccard, et al., 2009).

How to: Any approach designed to assess whether a variable of 
interest improves our understanding of the distribution of species, 
and the accuracy of SDM predictions, is suitable to testing whether 
variables representing EHPs are important in an SDM application. 
Robust tests of EHPs require awareness that landscape metrics 
sampled at different spatial extents are correlated (Figures 3 and 
5; in C2 or H2), and that patch and landscape metrics can also be 
correlated (Figures 3 and 5; between H1 and H2). To account for 
this, we suggest comparing models that retain a basic structure 
containing the same climatic covariates—selected either a priori, 
based on knowledge of the species, or empirically, based on pre-
liminary models—and metrics representing contrasting EHPs. Note 
that SDMs are often based on tens of covariates, and despite great 
advances in covariate selection, correlation among covariates re-
mains an active challenge both in SDM (Adde et al., 2023) and EHP 
(Wang et al., 2014) research. No universal solution to this issue ex-
ists, but selecting an initial subset of variables of interest based on 
ecological rationale should still be favoured (Popovic et al., 2024; 
Riva & Nielsen, 2020, 2021).

5  |  CHALLENGES FOR TESTING EHPs IN 
SDMs

The concepts underlying the approach we propose are widespread 
in ecology and conservation. Why, then, have EHPs so rarely been 
considered in SDMs? In addition to two limiting factors that are 
disappearing—the lack of high-resolution environmental and biodi-
versity data (Jetz et al., 2019), and separated traditions in patch ecol-
ogy, landscape ecology, and biogeography (Banks-Leite et al., 2022; 
Zipkin et al., 2021)—conceptual and technical aspects make incorpo-
ration of variables for testing EHPs in SDMs challenging.

5.1  |  Confusion around EHPs

Confusion around EHPs plagues the interpretation of results be-
tween patch and landscape ecology (Hadley & Betts,  2016; Riva, 
Koper, et al., 2024). It is paramount that such confusion should not 
affect tests of EHPs in SDMs. To prevent inappropriate inferences, 
we describe below five common misunderstandings.

First, the spatial domain of both EHP types depends on the 
system assessed. One can think of studies focusing on proper-
ties of patches with a larger extent than some studies focusing on 
properties of landscapes (e.g., effects of patch characteristics for 
tree species, Forsyth & Gilbert, 2021 versus effects of landscape 
characteristics for mosses, Larsen & Hargreaves,  2020). Metrics 
of patches and landscapes differ conceptually (Figures  3 and 5), 
regardless of the spatial dimensions appropriate for different 
systems.

Second, the response variable (e.g., species occupancy) can 
be measured in patches for studies focusing on landscape char-
acteristics (‘patch-landscape’ study design, Arroyo-Rodríguez & 
Fahrig, 2014). This can be confusing because, in this case, patches 
are the observational units used to assess the effects of landscape 
characteristics. While for tests of EHPs in SDMs the observational 
units are typically pixels (Figures 4–6), we stress that what matters 
to discriminate different types of EHPs is not the grid resolution, 
observational units, spatial extent of the study, or the response vari-
able, but rather the type of predictor variable measured (Figures 3 
and 5). In a study assessing the effects of patch characteristics, 
the predictor is measured for different patches, whereas in a study 
assessing the effects of landscape characteristics, the predictor 
is measured for different landscapes (Figures  2, 3, 5 and 6). Note 
that studies on the effects of landscape characteristics via SDMs 
can be conducted at two different spatial scales—the scale of pixels 
containing biodiversity data (Figure 5, C1; see, e.g., Riva, Barbero, 
et al., 2023), and the scale of multiple extents surrounding the pixels 
containing the biodiversity data (Figure 5, H2 and C2; see, e.g., Adde 
et al., 2023; Scherrer et al., 2019).

Third, some paradigms generate predictions that apply both to 
patches and landscapes. These include the species–area relationship 
(Rosenzweig & Ziv, 1999) and metapopulation theory (Hanski, 1998). 
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    |  13RIVA et al.

For instance, area effects have been tested both when comparing 
patches of different sizes (Laurance,  2008) and when comparing 
landscapes differing in their total habitat area (Fahrig,  2017), and 
metapopulation theory acknowledges that extinction within each 
of many patches in a landscape is a separate phenomenon from the 
persistence of the species in the landscape itself (Hanski,  1998; 
Levins, 1969). When such paradigms are tested, it is key to distin-
guish predictions that apply to patches from predictions that apply 
to landscapes (Fahrig, 2023; Galán-Acedo et al., 2024).

Fourth, metrics such as core habitat (Herse et al., 2018) or edge 
length (Fahrig, 2023) can be measured both when focusing on indi-
vidual patches and on landscapes (Table 1). Researchers should en-
sure that the metrics incorporated in their models capture the proper 
ecological characteristics of the target species and EHP(s), based on 
their hypotheses and study objectives. Separating the effects of the 
characteristics of patches from the effects of the characteristics of 
landscapes is key because extrapolation of the first often fails in 
predicting the latter (Fahrig, 2023; Galán-Acedo et al., 2024; Riva & 
Fahrig, 2023a). For instance, the propensity of a species to respond 
negatively to edges within a patch does not predict how that species 
will respond to landscapes containing many edges (Fahrig,  2023). 
Conflating the two types of EHPs implies the risk of failing to un-
derstand which environmental gradients affect the distribution of a 
species, reducing the predictive power of SDMs, and particularly so 
at local scales.

Last, biodiversity data are often available at grains that differ 
from the grain of the environmental data used as predictor variables 
in SDMs, leading to mismatches between the grain at which biodi-
versity data are sampled, and the grain at which environmental co-
variates are assumed to explain such data (Estes et al., 2018; Guisan 
& Thuiller, 2005). In the next section, we address in more detail the 
importance of grain for testing EHPs in SDMs.

5.1.1  |  Grain

Grain is well-known to influence our understanding of ecological 
patterns and processes (Levin, 1992; Turner, 1989; Wiens, 1989). 
In SDMs, the spatial resolution of data available for both response 
and predictor variables determines the finest possible grain at 
which an analysis can be conducted, and this affects the biological 
interpretation of results (Moudrý et al., 2023) and model accuracy 
(Guisan & Zimmermann, 2000). Analyses at grains that approxi-
mate the size of the traditionally small sampling plots used in ecol-
ogy (Estes et al., 2018), such as 25 m × 25 m (Haesen et al., 2023), 
can capture responses to fine-scale habitat properties that can-
not be assessed in a coarser-grained analysis, such as the effects 
of patch characteristics on pixel suitability (Figure 5, top vs. bot-
tom row). The implications of grain for testing EHPs are therefore 
clear.

When the grain of analysis is very fine (Figures 5 and 7), and 
thus habitat in each pixel can be assumed to be homogeneous, it is 

more intuitive to test for EHPs because the presence of a species 
in every pixel might be affected by the properties of the habitat 
patch containing that pixel (Wierzcholska et  al.,  2020) (Figure  5, 
H1), and by the properties of the landscape surrounding that pixel 
(Bellamy et al., 2013) (Figure 5, H2). Conversely, when only coarse-
resolution data are available (Figures  5 and 7), and thus habitat 
in each pixels is heterogeneous, one can only calculate landscape 
property metrics (e.g., habitat amount, configuration, and/or di-
versity) within each pixel (Riva, Barbero, et al., 2023) (Figure 5, C1), 
or surrounding each pixel (Li et al., 2023) (Figure 5, C2), therefore, 
testing only for effects of landscape characteristics. Although 
EHPs are more easily assessed with high-resolution data, the ap-
propriateness of a given grain depends on the phenomena of inter-
est in a particular application (Levin, 1992; Wiens, 1989) (Figure 7). 
Note that species might have independent fine-property require-
ments that co-occur in the same coarse pixel (e.g., animals with 
a larval stage needing different land cover types than adults), 
making some coarse-grain pixels appear artefactually suitable 
(Bütikofer et al., 2020).

Considerations around grain are also key because the size 
of habitat patches is heterogeneous in most regions worldwide 
(Riva et  al., 2022; Riva, Koper, et  al.,  2024). Therefore, in most 
attempts to understand EHPs via SDMs, some patches will be 
smaller and some larger than the grain (Figure 7, central inset in 
top row). This requires assumptions about what are ecologically 
meaningful patches in each system. It is reasonable to assume 
that patches smaller than the grain of analysis are negligible with 
high-resolution data (e.g., considering tree clusters smaller than 
10 m × 10 m as ‘non-forests’), but less so when grain increases. 
Another common assumption is that at certain grain sizes, the ef-
fect of habitat area reaches an asymptote, and thus all patches big-
ger than that area can be considered equal in the model (Timmers 
et al., 2022). Note that both assumptions are implicit when biodi-
versity data are simply related to the land cover category of the 
pixel containing it (Figure 4, top row in central inset).

5.1.2  |  Extent

Extent also influences our understanding of ecological patterns 
and processes (Levin,  1992; Turner,  1989; Wiens,  1989), with im-
portant implications on testing EHPs (Chevalier et al., 2021; Zipkin 
et al., 2021). For instance, it has been suggested that biogeographi-
cal patterns such as proximity to species' range edges might mediate 
responses to land cover patterns (Banks-Leite et al., 2022; Valente 
et al., 2023), making the extent of a study important when testing for 
EHPs in SDMs. It has also been proposed that deforestation might 
affect more profoundly species in areas that are historically less 
prone to disturbance (Betts et al., 2019), which implies that studies 
conducted regionally cannot detect similar effects. These examples 
highlight that how species respond to land cover patterns might 
change as the extent of a study increases. However, small extents 
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14  |    RIVA et al.

risk ‘truncating’ the climatic niche of species (Chevalier et al., 2021, 
2022): when selecting restricted extents, models designed to pre-
dict changes in distribution with climatic conditions might underes-
timate the potential future distribution of species because the data 
used to calibrate the SDM do not capture the full range of environ-
mental conditions within which the species can exist. These trade-
offs should be critically evaluated to ensure proper tests of EHPs 
via SDMs.

5.1.3  |  Habitat

Even the simple habitat concept used here—different land cover 
types that compose a mosaic of discrete habitat patches across 
landscapes—presents some challenges in the context of identifying 

EHPs. For instance, for species for which the habitat association 
is well understood, it is possible to find biodiversity data outside 
of the known habitat (e.g., forest-dwelling species recorded out-
side forests) because of (i) errors in the spatial coordinates of the 
record (Graham et  al.,  2008), (ii) errors in the classification of the 
habitat map (Lechner et al., 2012), or (iii) the species was actually 
observed outside of its habitat, for example, during dispersal or in 
a sink (Dunning et al., 1992). It is unclear how such data should be 
treated when researchers are interested in assessing the effects of 
patch characteristics (Figure 5, H1), because these records are not 
associated with habitat. It is impossible to determine based on the 
data alone which of the three reasons above underlie the mismatch 
between a species and its habitat, calling for caution when analysing 
such observations. Conversely, when assessing the effects of land-
scape characteristics (Figure 5, H2, C1, C2), observations recorded 

F I G U R E  7  Selecting a proper grain of analysis is key to assess the effects of habitat patches (EHPs). Here, the same region is shown 
at three different grains (top row), and the proper grain for an analysis depends on the objective of a specific study. When every raster 
pixel can be assumed to be homogeneous, one can associate them with metrics capturing both the characteristics of the patch containing 
the pixel, and of the landscape containing the pixel. Conversely, when pixels are better conceptualized as heterogeneous spatial units, 
biodiversity data cannot be related to individual patches, but only to metrics of landscape characteristics, measured either inside the pixel or 
in the extents surrounding it.
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outside of species' habitats can be more easily analysed, because it is 
less likely that a species will be found far away from its habitat when 
considering larger spatial domains.

Additionally, for many species, it is still unclear what exactly con-
stitutes habitat (Hortal et al., 2015). Testing for EHPs in SDMs could 
provide valuable insights in this direction (see approach described 
in Table 2) but implies computational challenges. Recent advances 
with covariate selection procedures are promising in this direction 
because they can rapidly process thousands of potential covariates, 
reducing them into a set of uncorrelated predictors appropriate for 
SDM fitting (Adde et al., 2023). However, similar covariate selection 
approaches would need to be adjusted to the ‘scale of effect’ para-
digm, that is, would need to allow comparisons among models with 
the same covariates measured at different extents while also reduc-
ing a priori the number of candidate environmental conditions. Using 
artificial intelligence approaches might also provide solutions when 
facing many predictors (Brun et al., 2024). Similarly, not all tools de-
veloped for SDMs allow incorporating dependencies in the model 
that might be necessary, for example, when several observations are 
located inside a single patch.

5.1.4  |  Data

Because EHPs are well supported in the empirical literature, there is 
no doubt that the incorporation of variables representative of EHPs 
in SDMs will improve predictions and inference—at least in some 
cases. However, the question is how often such effects will be rel-
evant depending on the different scopes of SDM analyses (Figure 7). 
While previous meta-analyses and syntheses suggest that many spe-
cies might be affected by EHPs, it is unknown whether such effects 
are negligible when the goal is predicting the distribution of species 
(i) at different grains than typical studies in ecology, and (ii) across 
large extents, as it is typically done with SDMs. Furthermore, as the 
complexity of the model structure increases (Merow et  al.,  2014), 
larger datasets are needed to evaluate whether EHPs matter in 
space and time. For most species on Earth, therefore, assessing 
EHPs is currently unfeasible because we lack sufficient data (Hortal 
et al., 2015). When data are sparse and the extent is large, it is rea-
sonable to expect that climatic variables will capture most of the 
variation in the distribution of a species, and thus EHPs might ap-
pear to be negligible. Still, entering a future of increasing availability 
of biodiversity data (Besson et al., 2022; Hartig et al., 2023; Pollock 
et  al.,  2020), these limitations will be progressively reduced. We 
therefore believe that EHPs will play a key role for high-resolution 
SDMs and other biodiversity models. We propose a few outstand-
ing research questions to stimulate advancements in this avenue of 
research (Table 2).

In addition to the need for large datasets, the type of biodiversity 
data used in SDMs—typically biased in space (Bowler et al., 2022; 
Chauvier et al., 2021)—has important implications for tests of EHPs. 
The information content of ‘big’ unstructured data can be limited 

even when considering large datasets (Boyd et al., 2023), and when 
sampling biases are correlated with landscape characteristics, it is 
possible to confuse biases in the data with EHPs. For instance, land-
scapes with smaller patches, less habitat, or more fragmented habi-
tat are likely to be sampled more intensely because these land cover 
patterns are typically associated with anthropogenic landscapes, 
and thus more easily accessible to scientists (Bowler et  al., 2022). 
This might result in positive, artefactual associations between the 
distribution of a species and lower habitat amounts and/or higher 
habitat fragmentation. Care should be taken to avoid misleading 
inferences by accounting for biases, either via statistical models 
(Chauvier et al., 2021) or by implementing proper sampling designs 
(Pasher et al., 2013).

6  |  CONCLUSIONS

At its core, this review aims to bridge the divide between research 
based on SDMs and an extensive body of evidence suggesting that 
species respond to properties of habitat patches. We therefore 
suggest that incorporating variables representing EHPs in SDMs 
has the potential to enhance our understanding of species distri-
butions, particularly when considering an increasing availability of 
high-resolution data. While a few SDM studies already incorporated 
variables representing EHPs as predictors, the practice has been to 
date sporadic and disorganized. We call for efforts to understand 
when incorporating EHPs in SDMs can be useful, and suggest that 
following the four steps outlined in Figure 6 will aid in organizing and 
expanding ongoing work.

Resolving knowledge gaps around EHPs is important and timely 
because researchers are using high-resolution SDMs increasingly 
often in biodiversity conservation applications (Guisan et al., 2013; 
Pollock et al., 2020). Such analyses inform management actions and 
policies that refer to spatial domains where EHPs are important for 
many species. SDMs that neglect EHPs risk therefore compromis-
ing the success of on-the-ground biodiversity conservation (Guisan 
et al., 2013; Velazco et al., 2020). Correct tests of EHPs in SDMs will 
also help in designing effective policies and actions that target pat-
terns in habitat amount, configuration, and diversity, answering key 
questions such as ‘for how many species are patches smaller than a 
certain area too small to be viable?’, or ‘when is there too little habi-
tat left for the persistence of species in a landscape?’ (Table 2). These 
have been key research questions in ecology and conservation for 
decades, and analyses based on SDMs that incorporate EHPs have 
the potential to provide novel, useful insights.

More broadly, our review adds to recent efforts towards con-
necting historically disconnected disciplines such as landscape 
ecology, biogeography, and macroecology (Banks-Leite et al., 2022; 
Chaplin-Kramer et al., 2022; Zipkin et al., 2021). We share the en-
thusiasm of other authors who suggested integrating information 
across spatial scales will be key in ecology and conservation, but 
also acknowledge the inherent difficulties of this task (McGill, 2019; 
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Newman et al., 2019; Riva, Graco-Roza, et al., 2023). In this context, 
we believe that proper tests of EHPs with SDMs will aid in resolving 
some of the long-standing, unsolved questions that persist around 
biodiversity change across spatial scales.
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