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1  | INTRODUC TION

Knowledge	 about	 the	 spatial	 distributions	 of	 organisms	 is	 funda‐
mental	for	both	the	study	of	biodiversity	and	its	management,	but	
is	 usually	 unavailable	 at	 sufficiently	 fine	 spatial	 detail	 (Hartley	 &	
Kunin,	2003;	Jetz,	McPherson,	&	Guralnick,	2012).	Although	ideally	
the	spatial	locations	of	all	individuals	of	a	species	would	be	known,	
in	reality	the	spatial	grain	(i.e.,	resolution)	of	species	occurrence	in‐
formation	is	rather	coarse,	usually	from	tens	to	hundreds	of	square	
kilometres	 (Hurlbert	&	 Jetz,	 2007).	One	way	 to	 unify	 the	 coarse‐	
and	 fine‐grained	 occurrence	 of	 species	 is	 through	 the	 concept	 of	
“occupancy”,	 usually	measured	as	 the	proportion	of	 grid	 cells	of	 a	
given	area	 in	which	a	species	occurs.	For	a	 landscape	with	nested	
grids	of	different	areas,	the	occupancy–area	relationship	(OAR)	de‐
scribes	how	this	proportion	varies	with	the	area	of	the	grain	at	which	
it	is	measured	(He	&	Condit,	2007;	Kunin,	1998).	This	relationship	is	
also	known	as	the	range–area	relationship	(Harte,	Conlisk,	Ostling,	
Green,	&	Smith,	2005),	area–area	curve	(IUCN,	2010)	or	scaling	pat‐
tern	of	occupancy	(Hui	et	al.,	2009).

The	OAR	is	always	monotonically	increasing,	usually	in	a	nonlin‐
ear	way	(Hartley	&	Kunin,	2003),	and	the	rate	of	 its	 increase	char‐
acterizes	the	spatial	distribution	of	species	across	grains.	Hereafter,	
we	 follow	others	 (He	&	Condit,	 2007)	 and	 refer	 to	 the	 rate	of	 in‐
crease	 in	 occupancy	with	 increasing	 grain	 size	 as	 an	 “OAR	 slope”,	

acknowledging	 that	 this	 is	 a	measure	 of	 the	 steepness	 of	 a	 curve	
rather	than	a	slope	in	the	strict	sense.	When	the	grain	is	very	small,	
with	grid	cells	approximately	the	size	of	one	tree,	occupancy	is	simply	
the	number	of	individuals	divided	by	the	number	of	all	cells	(Azaele,	
Cornell,	&	Kunin,	2012).	Using	nested	grids	of	 increasing	cell	 area	
(i.e.,	increasing	grain	size),	the	OAR	describes	how	individuals	aggre‐
gate	to	occupy	larger	areas	(Kunin,	1998).	If	a	species	is	highly	aggre‐
gated,	it	occupies	few	larger	cells,	thus	occupancy	increases	slowly	
with	increasing	grain	size.	The	same	number	of	individuals	scattered	
uniformly	across	cells	would	mean	that	occupancy	increases	rapidly	
with	grain	size	(Figure	1),	and	a	smaller	number	of	 individuals	with	
the	same	degree	of	aggregation	would	exhibit	an	even	steeper	 in‐
crease	(He	&	Condit,	2007).	The	OAR	slope	thus	captures	informa‐
tion	on	both	species	abundance	and	spatial	aggregation	(Figure	1).	It	
is	also	directly	linked	to	the	box‐counting	fractal	dimension	of	spatial	
distribution	(Halley	et	al.,	2004).	The	OAR	can	thus	be	extrapolated	
to	grains	at	which	we	have	no	data	on	occupancy	(Azaele	et	al.,	2012;	
Kunin,	1998),	allowing	for	downscaling	from	coarse‐grain	occupan‐
cies	 to	 abundances	 or,	 conversely,	 upscaling	 from	 abundances	 to	
geographical	occupancies.

Despite	the	fundamental	role	of	OARs	in	connecting	biological	
patterns	across	scales,	accurate	estimation	of	OARs	 is	difficult	 for	
most	 species	 because	 of	 the	 scarcity	 of	 detailed	 information	 on	
spatial	distribution	(Barwell,	Azaele,	Kunin,	&	Isaac,	2014;	Hui	et	al.,	
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Methods: We	used	mixed‐effect	 regression	to	examine	the	observed	shape	of	 the	
OAR	(its	“slope”)	against	species‐specific	and	plot‐wide	predictors:	coarse‐grain	oc‐
cupancy,	 tree	 size,	 plot	 species	 richness,	 energy	 availability	 and	 topographic	
complexity.
Results: We	 found	 large	 variation	 in	OAR	 slopes,	 and	 the	 variation	was	 strongest	
among	 species	within	 plots.	 The	OAR	 slopes	 showed	 a	 latitudinal	 trend	 and	were	
steeper	near	the	equator.	As	predicted,	coarse‐grain	occupancy	and	tree	size	nega‐
tively	affected	OAR	slopes,	whereas	species	richness	had	a	positive	effect	and	ex‐
plained	most	of	the	variance	between	plots.	Although	hypothesized	directionalities	
were	broadly	confirmed,	traits	and	environment	had	relatively	limited	overall	predic‐
tive	power.
Main conclusions: These	results	document	the	variation	of	the	OAR	for	3,157	species	
at	near‐global	extent.	We	found	a	latitudinal	gradient	in	OAR	slopes	and	confirmed	
key	hypothesized	predictors.	But	at	this	global	extent	and	over	the	large	set	of	species	
analysed,	 the	 remaining	 unexplained	 variation	 in	 OAR	 slopes	 was	 substantial.	
Nevertheless,	this	large‐scale	empirical	analysis	of	the	OAR	offers	an	initial	step	to‐
wards	a	more	general	use	of	OARs	for	the	fine‐scale	prediction	of	species	distribu‐
tions	and	abundance.

K E Y W O R D S

abundance,	actual	evapotranspiration,	biodiversity	conservation,	Nachman	model,	
occupancy–area	relationship,	scaling,	spatial	aggregation,	topography,	tree	size
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2009;	 IUCN,	 2010).	 A	 generalized	 characterization	 of	 variation	 in	
OARs	and	evaluation	of	potential	drivers	of	the	relationship	would	
have	 both	 basic	 and	 applied	 significance,	 including	more	 accurate	

estimation	of	OARs	for	downscaling	or	upscaling	occupancy	of	spe‐
cies.	However,	the	potential	mechanistic	underpinnings	and	variation	
in	 OARs	 have	 remained	 surprisingly	 understudied,	 with	 empirical	

F I G U R E  1  Occupancy–area	relationships	(OAR)	for	four	tree	species	from	the	20	ha	(500	m	×	400	m)	tree	plots.	Fitted	lines	follow	the	
Nachman	model	(p=1−e−ca

z),	where	p	is	the	proportional	occupancy	at	a	grid	cell, a	is	area,	and	c and z	are	the	parameters	to	fit.	The	value	of	
z	represents	the	OAR	slope	used	for	further	analysis.	(a)	The	OAR	in	log–log	space,	illustrating	how	saturated	occupancies	are	fitted	by	the	
Nachman	model.	(b)	The	OAR	in	Nachman‐transformed	space	{x	axis:	ln(a);	y	axis:	ln[−ln(1	−	p)]};	the	intercept	corresponds	to	the	parameter	
c,	and	the	slope	to	the	parameter	z.	The	filled	circles	are	occurrences	at	1	m	grain	(N	is	their	total	number).	(c–f)	Variation	in	OAR	slopes	
can	arise	either	from	differences	in	spatial	aggregation	or	from	variation	in	N.	The	widespread	species	Aporusa aurea,	Rinorea viridifolia 
and Brosimum lactescens	all	reach	saturated	occupancy	(p	=	1)	at	grains	below	the	coarsest	possible;	this	is	the	grain	of	saturation	(SA).	
Mangifera indica	is	a	rare	species	that	reaches	the	so‐called	grain	of	endemism	(E),	at	which	all	of	their	individuals	are	contained	in	a	single	
grid	cell.	Occupancy	values	cannot	be	lower	than	A/A0	(the	hypotenuse	of	the	shaded	grey	triangle	in	panels	a	and	b),	where	A	is	the	area	
of	a	grid	cell	at	a	given	grain,	and	A0	is	the	total	area	of	the	plot	(A0	=	2	×	10

5 m2),	because	species	cannot	occupy	less	than	one	grid	cell	at	
each	scale.	In	(b),	the	y	axis	is	positively	infinite	(dotted	line),	because	the	proportional	occupancy	is	Nachman‐transformed;	we	assume	
.999	to	be	the	approximation	of	the	first	saturated	occupancy	(p	=	1)	for	illustrating	the	grain	of	saturation	(open	circles)	in	the	Nachman	
transformation;	cgo	is	the	proportional	occupancy	at	100	m	grain	(i.e.,	104 m2)	
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demonstrations	 limited	to	a	relatively	small	number	of	regions	and	
species.	Briefly,	Hartley,	Kunin,	Lennon,	and	Pocock	 (2004)	exam‐
ined	how	OARs	vary	across	grains	 in	16	British	plant	 species,	and	
Pocock,	Hartely,	 Telfer,	 Preston,	 and	Kunin	 (2006)	 and	Barwell	 et	
al.	(2014)	investigated	how	particular	habitats	and	species	traits	are	
correlated	with	OAR	in	rare	British	plants	and	dragonflies.

In	this	study,	we	set	out	to	explore	the	variation	in	OARs	and	test	
key	potential	predictors	of	among‐species	and	among‐site	OAR	vari‐
ation	and	to	evaluate	the	generality	of	these	predictors.	Specifically,	
we	 sought	 to	 quantify	 the	OAR	 for	 trees	worldwide	 and	document	
the	consistency	and	predictability	of	this	relationship	among	species	
and	forests.	We	hypothesized	that	environmental	(biotic	and	abiotic)	
attributes	of	landscapes,	biological	traits	of	species,	and	emergent	spe‐
cies	 attributes,	 such	as	 their	 coarse‐grain	occupancy	 (cgo),	 all	 affect	
the	OAR	in	a	predictable	way	(Table	1).

1.1 | Environmental drivers of OAR

Environmental	 conditions	 can	 affect	 population	 size	 and	 its	 spatial	

structure	(Chesson,	2003;	Condit,	Engelbrecht,	Pino,	Pérez,	&	Turner,	

2013).	 For	 example,	 habitats	with	high	energy	 availability	 and	more	

resources	 may	 support	 more	 individuals,	 increase	 local	 population	

sizes	(Evans,	Warren,	&	Gaston,	2005),	and	thus	result	in	a	lower	rate	

of	 increase	in	occupancies	with	 increasing	grain	size	(i.e.,	a	decrease	

in	OAR	slope).	But	high	energy	or	 resource	availability	may	depress	

species	abundance	and	spatial	aggregation	via	increasing	intraspecific	

or	interspecific	competition	for	resources,	or	via	increasing	mortality	

of	species	or	decreasing	their	 recruitment	owing	to	natural	enemies	

(pathogens	 and	 herbivores)	 (Schemske,	 Mittelbach,	 Cornell,	 Sobel,	

&	Roy,	2009;	Wright,	2002).	Elevated	energy	or	resource	availability	

would,	in	that	case,	steepen	the	OAR	slope.

TA B L E  1  Hypothesized	rate	of	increase	in	occupancy	with	grain	[i.e.,	how	the	slope	of	the	occupancy–area	relationship	(OAR)	might	be	
influenced	by	plot‐	and	species‐specific	attributes]

Predictors Rationale	for	hypotheses Expected	effect Our	results

Plot	level

I.	Total	available	resources	or	energy

Energy	availability High	energy	supports	more	individuals,	increases	population	
sizes	and	depresses	the	OAR	slope.	Alternatively,	it	
intensifies	intraspecific	competition,	reduces	population	
sizes,	disperses	individuals	randomly	and	steepens	the	OAR	
slope

Steeper	or	shallower Steeper

II.	Heterogeneity	of	abiotic	conditions

Elevation	range Large	elevation	difference	produces	patchy	habitats	and	
increases	spatial	aggregation	of	individuals,	reducing	the	
OAR	slope

Shallower Shallower

Variability	of	slope,	
convexity	and	elevation

High	variability	of	topography	creates	more	habitats	in	
which	species	specialize,	causing	individuals	to	be	more	
spatially	aggregated,	lowering	the	OAR	slope

Shallower Shallower

Fractal	dimension	(F)	of	
terrain	slope,	convexity	and	
mean	elevation

If	individuals	track	environment,	the	OAR	slope	should	
increase	with	increasing	random	distribution	of	habitats	
(i.e.	fractal	dimension,	F)

Steeper Steeper,	except	for	F 
of	terrain	slope

III.	Biotic	conditions

Species	richness Species	richness	is	positively	correlated	with	intraspecific	
competition,	the	increase	of	which	decreases	conspecific	
abundance	and	makes	the	species	more	dispersed,	which	
would	steepen	the	OAR	slope

Steeper Steeper

Mean	number	of	individuals	
per	species

A	larger	number	of	individuals	means	higher	occupancy	at	
fine	grains	and	thus	shallower	OAR

Shallower Shallower

Species	level

Tree	size Large‐statured	tree	species	out‐compete	small	ones	in	use	
of	energy	or	resources,	and	thus	are	more	abundant,	which	
depresses	the	OAR	slope.	On	the	contrary,	large	trees	
facilitate	seed	dispersal,	making	individuals	more	dispersed,	
steepening	the	OAR	slope.

Shallower	or	steeper Shallower,	with	
levelling	off	with	
increasing	tree	size

Coarse‐grain	occupancy Spatially	rarer	species	(i.e.,	those	with	small	coarse‐grain	
occupancy)	are	increasingly	unlikely	to	have	shallow	OAR,	
owing	to	a	hard	boundary	on	minimum	occupancy	at	the	
finest	grain	measured,	whereas	spatially	common	species	
(i.e.,	those	with	large	coarse‐grain	occupancy)	can	have	
either	small	or	large	fine‐gain	occupancy,	thus	either	steep	
or	shallow	OAR

Shallower,	with	
levelling	off	as	
coarse‐grain	
occupancy	increases

Shallower,	with	
levelling	off	with	
increasing	coarse‐
grain	occupancy
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In	addition	to	the	total	available	energy	and	resources,	their	spa‐
tial	variability	and	structure	(arrangement)	can	influence	the	distri‐
bution	of	 individuals	on	the	landscape,	because	most	species	have	
specific	 environmental	 requirements	 (Condit	 et	 al.,	 2013;	 Harms,	
Condit,	Hubbell,	&	Foster,	2001).	Environmental	conditions	are	often	
spatially	autocorrelated	or	structured	(Legendre,	1993).	High	spatial	
variability	 or	 dispersion	 of	 environmental	 conditions	 can	 translate	
into	a	greater	diversity	of	habitats,	thus	increasing	the	probability	of	
species–habitat	association	and	spatial	aggregation	of	species,	thus	
weakening	the	 increase	of	occupancies	with	grains.	 In	turn,	spatial	
structure	of	environments	defines	how	they	are	arranged	in	space;	
patchy	or	spatially	structured	environments	can	reinforce	the	spatial	
aggregation	of	species,	thus	depressing	the	increase	of	occupancies	
with	grains.

Detailed	maps	of	fine‐grain	energy	and	resources	are	rarely	avail‐
able,	but	it	is	possible	to	use	topographic	factors,	such	as	elevation,	
convexity	and	slope,	as	a	comprehensive	proxy	for	habitats	(Cáceres	
et	al.,	2012;	Legendre	et	al.,	2009).	Large	elevation	difference	gen‐
erates	heterogeneity	of	environmental	conditions,	increasing	spatial	
aggregation	of	species	(Chesson,	2003;	Davies	et	al.,	2007),	thus	de‐
pressing	the	OAR	slope.

The	 species	 richness	 is	 often	higher	 in	 areas	with	high	energy	
availability	and	environmental	heterogeneity,	both	of	which	are	seen	
as	 facilitators	 of	 coexistence	 (Evans	 et	 al.,	 2005;	 Stein,	 Gerstner,	
&	 Kreft,	 2014).	 But	 beyond	 these	 broad‐scale	 richness–energy	
availability	 associations,	 globally,	 conspecific	 negative	 density	 de‐
pendence	 is	 positively	 correlated	 with	 species	 richness	 (Johnson,	
Beaulieu,	 Bever,	 &	 Clay,	 2012;	 LaManna	 et	 al.,	 2017).	 Given	 that	
the	 density	 dependence	 can	 reduce	 both	 population	 size	 and	 its	
spatial	 aggregation,	 species	 richness	 may	 be	 positively	 correlated	
with	OAR	slope.	We	expect	the	potential	effect	of	species	richness	
on	 the	 occupancy–area	 slope	 to	 be	 equivocal	 and	 dependent	 on	
the	prevalence	and	directionality	of	niche	segregation	and	density	
dependence	processes.	Given	that	a	smaller	number	of	 individuals	
often	corresponds	to	a	steeper	OAR	slope	(He	&	Condit,	2007),	OAR	
slopes	are	expected	to	decrease	with	the	mean	number	of	individu‐
als	per	species.

1.2 | Traits as drivers of OAR

Traits	are	known	to	influence	species	abundances	and	spatial	distri‐
butions	(Rüger,	Wirth,	Wright,	&	Condit,	2012;	Westoby	&	Wright,	
2006)	and	thus	by	extension	might	also	affect	the	scale	dependence	
of	their	occurrence.	For	example,	tree	size	at	maturity	reflects	both	
the	strategy	of	species	to	compete	for	light,	water	and	nutrients	and	
also	their	ability	to	disperse	(Díaz	et	al.,	2016;	Westoby,	1998).	We	
hypothesize	that	because	large‐sized	trees	tend	to	disperse	farther	
(Thomson,	Moles,	Auld,	&	Kingsford,	2011),	they	might	show	a	more	
regular	 spatial	 distribution,	 resulting	 in	 a	 steeper	 occupancy–area	
relationship.	Alternatively,	a	large‐sized	tree	might	more	readily	out‐
compete	smaller	ones	for	resources	at	small	scales	(Lutz	et	al.,	2018),	
leading	the	large‐sized	tree	species	to	be	more	abundant	and	have	a	
shallower	increase	of	occupancy	with	area.

Coarse‐grain	occupancy	(i.e.,	the	proportion	of	cells	occupied	at	
coarser	spatial	scale)	is	information	that	is	often	more	readily	gath‐
ered	 than	 fine‐scale	 occurrence.	 For	 a	 given	 analysis	 grid	 (e.g.,	 of	
100	m	×	100	m	cells	in	the	case	of	tree	plots;	variable	cgo	in	Figure	1),	
it	represents	the	maximum	occupancy	attained	by	a	species.	It	distin‐
guishes	species	that	are	spatially	rare	(those	occurring	in	only	a	small	
portion	of	the	landscape,	cgo	˂˂	1)	from	those	that	are	common	(e.g.,	
occurring	in	all	cells,	cgo	=	1).	Coarse‐grain	occupancy	thus	emerges	
as	a	joint	species	property,	or	emergent	attribute,	from	both	species	
traits	and	the	local	environment.	Spatially	common	species	(cgo	≈	1)	
can	have	either	steep	or	shallow	OARs,	but	with	 increasing	spatial	
rarity	of	species	(cgo	<	1)	shallow	relationships	become	increasingly	
unlikely,	because	of	a	hard	boundary	on	minimum	occupancy	owing	
to	 the	 finest	 spatial	 grain	measured	 (see	Figure	1).	Given	 that	 the	
occurrence	of	species	is	much	more	readily	surveyed	and	known	at	
coarser	 spatial	 grains,	 the	 information	 value	 of	 coarse‐grain	 infor‐
mation	for	predicting	fine‐grain	occupancy	has	practical	significance	
but	has	seen	only	limited	evaluation	over	large	spatial	scales.

In	this	study,	we	quantify	OARs	for	a	large	dataset	of	3,157	tree	
species	based	on	17	fully	mapped	forest	plots	of	20	ha	worldwide.	
We	use	this	compilation	to	ask	the	following	questions:

1.	 How	 much	 does	 the	 OAR	 vary	 among	 species	 and	 among	
plots?

2.	 Do	OAR	slopes	vary	as	expected	with	key	species	traits	and	envi‐
ronmental	conditions?

3.	 How	large	is	the	predictive	ability	of	these	environment	and	trait	
associations,	and	do	they	offer	scope	for	the	prediction	of	OAR	
for	new	species	or	locations?

2  | METHODS

We	 selected	 17	 forest	 plots	≥	20	ha	 from	 the	 Smithsonian	 Forest	
Global	 Earth	 Observatory	 (ForestGEO;	 https://forestgeo.si.edu/)	
and	the	Chinese	Forest	Biodiversity	Monitoring	Network	(CForBio;	
http://www.cfbiodiv.org/english)	 (Figure	 1).	 Each	 of	 the	 plots	 is	 in	
relatively	 undisturbed	 forest.	 For	 each	 plot,	 we	 selected	 a	 20	ha	
(400	m	×	500	m)	subplot	(starting	at	the	coordinate	origin	of	the	plot),	
except	at	the	Yosemite	and	Wind	River	plots,	where	we	used	a	21	ha	
subplot,	300		×	700	m.	Topography	differs	greatly	among	plots:	the	
elevation	difference	within	individual	plots	is	as	low	as	17	m	and	as	
high	as	299	m.	Plot	censuses	follow	the	centre	for	tropical	forest	sci‐
ence	(CTFS)	protocol	(Condit,	1998).	All	individuals	≥	1	cm	diameter	
at	breast	height	(d.b.h.)	were	measured,	mapped	and	identified	taxo‐
nomically.	To	unify	taxonomy	among	plots,	we	used	the	Taxonomic	
Name	 Resolution	 Service	 v.3.0	 (http://tnrs.iplantcollaborative.org)	
and	 the	Chinese	Virtual	Herbarium	 (www.cvh.ac.cn).	We	 excluded	
289	unidentified	species:	107	from	the	Banna	and	Korup	plots	(leav‐
ing	358	and	316	identified	species,	respectively),	57	from	the	Pasoh	
plot	(723	identified),	11	from	the	Yasuni	plot	(1,015	identified),	four	
from	the	Lienhuachih	plot	(137	identified)	and	one	from	each	of	the	

https://forestgeo.si.edu/
http://www.cfbiodiv.org/english
http://tnrs.iplantcollaborative.org
http://www.cvh.ac.cn
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Baotianman,	Dongling	and	Yosemite	plots.	Most	(70%)	of	unidenti‐
fied	species	were	rare,	with	occurrence	of	<	1/ha.	We	also	excluded	
species	that	were	represented	by	only	one	stem.	After	pruning,	the	
resulting	dataset	for	this	study	had	3,157	unique	species,	with	3,546	
different	OARs	owing	to	the	species	that	occurred	in	multiple	plots.

2.1 | Occupancy–area relationship

In	each	plot,	we	examined	the	occupancy	of	each	species	in	grids	of	
square	cells	having	sides	of	1,	2,	4,	5,	10,	20,	25,	50	and	100	m.	To	
characterize	 the	OAR,	we	quantified	occupancy	as	 the	proportion	
(p)	of	occupied	cells	and	related	it	to	the	area	(α)	of	the	grid	cell,	or	
the	grain.	 The	 slope	 (z)	 of	OAR	quantifies	how	quickly	occupancy	
aggregates	from	fine	to	coarse	grain	and	defines	the	shape	of	OAR.

To	choose	the	most	appropriate	function	for	the	OAR,	we	per‐
formed	a	preliminary	analysis	to	simulate	and	assess	three	commonly	
fitted	models:	Nachman,	power‐law	and	 logistic	models	 (Azaele	et	
al.,	 2012;	 see	 Supporting	 Information	 Appendix	 S1).	 Analytically,	
and	 based	 on	 a	 simulation	 of	 complete	 spatial	 randomness	 (CSR;	
see	Supporting	Information	Appendix	S1,	Fig.	S1.1),	we	found	that	
the	 slopes	 (z)	 of	 the	 power‐law	 and	 logistic	 models	 depended	 on	
grain	and	population	density.	Only	the	Nachman	model	consistently	
showed	a	slope	of	one	under	CSR.	Based	on	the	simulation	of	extreme	
spatial	aggregation	(ESA;	see	Supporting	Information	Appendix	S1,	
Fig.	 S1.1),	we	 found	 that	 the	 slope	 (z)	 of	 all	 the	 three	models	 de‐
creased	with	 increasing	abundance,	 and	approached	one	as	abun‐
dances	decreased.	Those	simulations	 indicated	negative	effects	of	
both	species	abundances	and	spatial	aggregation	on	OAR	slope	with	
strong	interaction:	OAR	slopes	increasingly	decreased	with	species	
abundances	 as	 spatial	 aggregation	 increased,	 and	 vice	 versa	 (see	
Supporting	Information	Appendix	S1,	Fig.	S1.2).	Therefore,	only	the	
Nachman	model	clearly	defined	aggregation,	with	the	slope	z < 1 in‐
dicating	spatial	aggregation.	We	therefore	used	only	the	Nachman	
model	in	further	analyses.

The	Nachman	model	 is	 often	 fitted	 using	 linear	 regression	 on	
transformed	 scale–area	 data,	 {i.e.,	 log[−log(1	 −	 p)]	 against	 log	 (α)}.	
However,	 this	 transformation	 has	 been	 shown	 to	 give	 too	 much	
weight	 to	 the	 occupancies	 at	 small	 scales	 (Packard,	 Birchard,	 &	
Boardman,	 2011),	 and	 it	 fails	 as	 the	 occupancy	 approaches	 one.	
Nonlinear	regression,	in	contrast,	allows	an	asymptote	of	one	when	
cαz	>>	1	(where	c	is	a	parameter	to	fit).	We	thus	adopted	nonlinear	
regression	 to	 fit	 the	Nachman	model	over	 the	grains	of	1,	2,	4,	5,	
10,	20,	25,	50	and	100	m	(Figure	1).	Furthermore,	we	used	slopes	(z 
values)	emerging	from	this	fitting	as	the	response	variable	to	charac‐
terize	the	variation	in	slope	among	species	and	among	plots	and	to	
explore	their	ecological	predictors.

2.2 | Predictors of occupancy–area slopes

We	 considered	 variables	 correlating	 with	 z,	 the	 occupancy–area	
“slope”,	at	two	levels:	species	and	plots.	At	the	plot	 level,	we	used	
three	groups	of	environmental	predictors	to	characterize	the	differ‐
ences	in	abiotic	and	biotic	conditions	(Table	1).	I.	Energy	and	resource	

availability.	We	used	ambient	energy,	measured	as	actual	evapotran‐
spiration	extracted	from	the	MODIS	(Moderate	Resolution	Imaging	
Spectroradiometer)	MOD	16A3	product	that	provides	average	an‐
nual	 mean	 evapotranspiration	 for	 the	 years	 2000–2013	 at	 1	km	
resolution	 (Mu,	Zhao,	&	Running,	2011),	which	captures	both	heat	
and	water	 essential	 for	 plants.	 II.	 Heterogeneity	 of	 abiotic	 condi‐
tions.	We	assessed	a	total	of	three	variables:	(a)	elevation	range,	the	
maximal	difference	of	elevation	that	the	plot	spans,	measuring	the	
topographic	complexity	of	each	plot;	 (b)	spatial	structure	(arrange‐
ment)	 of	 three	 topographic	 variables	 (slope,	 mean	 elevation	 and	
convexity),	quantified	by	fractal	dimension	of	the	variables	based	on	
variograms	in	each	plot,	with	high	values	meaning	more	random	dis‐
tribution	(Constantine	&	Hall,	1994);	and	(c)	spatial	variability	of	the	
three	topographic	variables,	defined	as	the	standard	deviation	of	the	
variables	among	grid	cells	in	each	plot.	All	the	three	variables	were	
calculated	for	each	20	m	×	20	m	cell	 in	each	plot.	The	mean	eleva‐
tion	of	a	cell	was	defined	as	the	mean	of	the	elevation	values	at	its	
four	corners.	Slope	was	the	mean	angular	deviation	from	horizontal	
of	each	of	the	four	triangular	planes	formed	by	connecting	three	of	
its	corners.	Convexity	was	the	elevation	of	the	cell	of	interest	minus	
the	mean	elevation	of	the	eight	surrounding	cells.	For	the	edge	cells,	
convexity	was	the	elevation	of	the	centre	point	minus	the	mean	of	
the	four	corners.	III.	Biotic	conditions.	Here,	we	evaluated:	(a)	spe‐
cies	richness,	counted	as	the	total	number	of	woody	species	in	each	
plot;	and	(b)	the	mean	number	of	individuals	per	species,	calculated	
as	the	sum	of	the	individual	number	for	all	species	in	a	plot	divided	
by	the	total	number	of	species.

As	 species‐level	 predictors	 (traits)	we	 included	 tree	 size,	mea‐
sured	as	the	maximal	diameter	at	breast	height	for	a	species	in	each	
plot,	and	coarse‐grain	occupancy,	measured	as	the	occupancy	at	a	
grain	of	100	m	×	100	m.

2.3 | Statistical models

We	 used	 linear	 mixed‐effect	 models	 (Pinheiro	 &	 Bates,	 2000)	 to	
evaluate	the	effect	of	plot	conditions	and	species	attributes	as	pre‐
dictors	on	 the	slopes	 (z)	of	 the	OARs.	Both	plot	and	species	were	
assigned	 random	 intercepts,	 and	 we	 assumed	 that	 those	 random	
intercepts	were	 independent	 of	 each	 other.	 Furthermore,	 random	
slopes	 by	 plot	 were	 added	 to	 the	 species‐specific	 predictors	 of	
interest.

First,	we	 started	with	a	null	model	 for	 the	OAR	slope	 (z),	 hav‐
ing	no	predictors,	only	plot	and	species	random	intercepts.	Second,	
to	test	the	effect	(including	significance	and	direction)	of	plot‐level	
variables	on	OARs,	we	examined	models	with	all	the	possible	com‐
binations	of	10	plot‐level	predictors	and	 selected	 those	with	each	
predictor	having	a	variance	inflation	factor	(VIF)	less	than	two	and	
p	≤	.05	(i.e.,	all	predictors	involved	in	the	models	are	significant	and	
independent	of	each	other).	Third,	to	test	the	effect	of	species‐spe‐
cific	predictors	on	OARs,	we	built	 three	separate	 types	of	models	
for	the	two	species‐level	predictors:	two	with	a	single	species‐spe‐
cific	predictor,	and	the	other	combining	tree	diameter	and	coarse‐
grain	occupancy	as	predictors.	Fourth,	we	also	constructed	a	model	
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combining	both	sets	of	predictors.	For	each	model	involving	species‐
level	 variables,	 we	 examined	 all	 the	 possible	 combinations	 of	 the	
fixed‐	and	random‐slope	terms	of	interest	(the	terms	assigned	ran‐
dom	slope	must	also	be	represented	as	fixed	effects)	and	selected	
the	 one	 with	 the	 smallest	 corrected	 Akaike	 information	 criterion	
(AICc;	see	Supporting	Information	Appendix	S2).

Model	 residuals	 using	 raw	 values	 of	 slope	 z	 were	 negatively	
skewed	(Figure	2);	therefore,	we	instead	used	the	transformation	−
log(θ	−	z),	where	θ	is	a	parameter	that	we	adjusted	to	get	the	skew‐
ness	of	residuals	as	close	to	zero	as	possible.	Tree	diameter	was	also	
highly	skewed;	therefore,	we	first	log10‐transformed	it.	All	the	vari‐
ables	were	then	standardized	to	zero	mean	and	variance	of	one.	We	
used	 second‐order	polynomials	 to	model	 the	potentially	nonlinear	

effect	of	tree	diameter	and	cgo.	We	set	the	VIF	of	two	as	the	thresh‐
old	for	testing	collinearity	among	predictors	(Zuur,	Ieno,	&	Elphick,	
2010),	and	no	models	exceeded	that	threshold.

All	mixed‐effect	models	and	model	selection	were	run	using	the	R	
package	“lmerTest”	v.2.0‐29	(Kuznetsova,	Brockhoff	&	Christensen,	
2015)	and	“MuMIn”	v.1.14.0	(Bartoń,	2015),	and	we	visualized	the	ef‐
fects	of	individual	predictors	on	OAR	slope	using	the	R	package	“vis‐
reg”	v.2.2‐0	(Breheny	&	Burchett,	2015),	and	calculated	the	fractal	
dimension	of	topographic	variables	using	R	function	“RFfractaldim”	
(Schlather	et	al.,	2017).	Effect	sizes	of	all	predictors	were	measured	
by:	 (a)	 marginal	 coefficients	 of	 determination	 (R2

m
),	 the	 proportion	

of	 total	 variance	 explained	 by	 the	 fixed	 effects	 alone;	 and	 (b)	 the	
so‐called	 partial	 conditional	 coefficients	 of	 determination	R2

pc
,	 the	

F I G U R E  2  Locations	of	study	forest	plots	worldwide	and	variations	in	the	slope	(z)	of	the	occupancy–area	relationship	(OAR	slope)	
among	species	and	across	plots.	(a)	Overall	frequency	distribution	of	the	slopes	from	17	forest	plots	worldwide	(3,546	OARs	for	3,157	
unique	species).	(b)	Geographical	locations	and	frequency	distributions	of	the	slopes	and	number	of	species	(in	parenthesis)	per	plot.	Red	
vertical	lines	show	the	overall	median	of	the	slope	across	all	plots;	dashed	green	vertical	lines	are	medians	of	the	slopes	in	individual	plots.	
The	medians	of	individual	plots	are	also	represented	by	the	point	colours	from	low	(green)	to	high	(red)	values.	The	y	axes	for	frequency	
distribution	are	all	in	density.	The	bottom	left	inset	shows	the	axis	scales	for	all	OAR	slope	frequency	distributions	shown	in	(b)	
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proportion	 of	 total	 variance	 accounted	 for	 by	 both	 the	 fixed	 and	
random	slope	effects	of	variables	of	 interest.	The	R2

pc
	 is	calculated	

by	subtracting	the	random	intercept	effects	from	the	conditional	co‐
efficient	of	determination	(the	total	variance	explained	by	both,	all	
fixed	and	all	random	factors;	Johnson,	2014;	Nakagawa	&	Schielzeth,	
2013).	The	fixed	effect	 is	 the	mean	effect	of	species‐	or	plot‐spe‐
cific	predictors	over	the	entire	set	of	species	or	plots,	whereas	the	
random	slope	effect	represents	the	species‐specific	deviation	from	
the	mean.	 For	 R	 scripts	 of	 our	main	 analyses,	 see	 the	 Supporting	
Information	(Appendix	S2).

3  | RESULTS

3.1 | Variation in OARs among species and plots 
worldwide

The	OAR,	measured	by	 its	 slope	 (z;	 i.e.,	 rate	of	 increase	 in	occu‐
pancy	with	grains),	showed	strong	variation	among	species,	ranging	
from	the	shallowest	increase	in	occupancy	observed	in	Anaxagorea 
panamensis	(Family:	Annonaceae)	on	the	Barro	Colorado	Island	plot	
(z	=	.248)	to	Aquilaria malaccensis	(Family:	Thymelaeaceae)	at	Pasoh	
with	 the	 steepest	 slope	 (z	=	1.331)	 (Figure	 2a).	 The	 largest	 pro‐
portion	of	the	variance	of	OAR	slope	was	from	within‐group	(plot	
and	species)	error	 (i.e.,	 the	 residuals	 in	 the	null	model),	 at	77.5%.	
Next	 was	 the	 variance	 between	 the	 groups	 by	 species	 (i.e.,	 the	
random	species	 intercepts),	 at	14.9%.	The	between‐plot	variance	
(i.e.,	 the	 random	 plot	 intercepts)	 was	 only	 7.6%.	 The	 OAR	 slope	
varied	 geographically	 (Figure	 2b),	 with	 its	 median	 value	 per	 plot	
increasing	towards	the	equator	(r	=	−.68,	p	=	.003)	from	.73	at	lati‐
tude	40°	N	(the	Dongling	plot)	to	.92	at	latitude	.69°	S	(the	Yasuni	
plot)	(Supporting	Information	Table	S1).	Plot‐level	skewness	of	the	
OAR	 slopes	 changed	 from	negative	 to	 positive	 from	 the	 equator	
to	higher	latitudes	(range:	−.89	to	.26,	r	=	.50,	p	=	.04).	There	were	
302	 (out	 of	 3,157)	 species	 occurring	 in	 multiple	 plots.	 The	OAR	
slope	had	a	very	weak	correlation	between	plots	for	the	same	spe‐
cies	[Figure	3a;	i.e.,	the	slope	varied	greatly	among	plots	within	the	
same	species,	even	for	the	species	shared	in	the	plots	close	to	each	
other	(Figure	3b,c)].

3.2 | Species traits and plot‐level environment as 
predictors of the OAR

We	found	significant	associations	of	 the	observed	OAR	slopes	with	
species‐	and	plot‐level	predictors	(Table	2),	but	a	large	amount	(88%;	
see	model	19	in	Table	2)	of	the	slope	variance	remained	unexplained,	
highlighting	the	importance	of	local	or	stochastic	processes.	The	OAR	
slope	 declined	 significantly	 and	 levelled	 off	 slightly	 with	 increas‐
ing	coarse‐grain	occupancy,	accounting	for	10.7%	of	the	variance	 in	
OAR	 slope,	 of	which	 10.5%	was	within	 plots	 (model	17	 in	Table	 2;	
Figure	 4a).	Adult	 tree	 size	 also	 had	 a	 nonlinear	 effect	 on	 the	OAR	
slope,	 but	 weaker	 than	 coarse‐grain	 occupancy:	 it	 explained	 8.9%	
of	 the	variance	of	 the	 slope,	 and	6.1%	when	examined	within	plots	
(model	16	in	Table	2).	Smaller	species	tended	to	have	steeper	slopes,	
but	 this	 diameter–slope	 association	 leveled	off	 towards	 large	diam‐
eters	(Table	2;	Figure	4b).	These	two	traits	together	explained	13.8%	
of	 total	variance	 in	 the	OAR	slope,	and	11%	when	examined	within	
plots	(model	18	in	Table	2).

Plot‐level	 attributes	 significantly	 affected	 the	OAR	slope	and	
explained	a	small	portion	of	total	variance	in	OAR	slope	but	a	ma‐
jority	 of	 between‐plot	 variance	 (models	1–15	 in	 Table	 2).	 Energy	
availability	had	a	positive	effect	and	heterogeneity	of	abiotic	con‐
ditions	generally	a	negative	effect	on	the	OAR	slope	(Table	2).	The	
OAR	slope	tended	to	be	shallower	in	areas	with	higher	variability	
of	 topographic	 factors,	 especially	 convexity	 and	mean	elevation,	

F I G U R E  3  The	pairwise	relationships	of	the	occupancy–area	
slope	(z)	for	all	the	species	shared	in	multiple	forest	plots	(a),	for	
the	species	occurring	in	the	Barro	Colorado	Island	(BCI)	and	Yasuni	
plots	(b)	and	for	the	species	common	in	the	Gutian	and	Tiantong	
plots	(c)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]	
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although	the	slope	variability	was	not	significant.	The	OAR	slope	
was	also	affected	by	 the	 spatial	 structure	of	environmental	 con‐
ditions	and	was	steeper	when	convexity	patterns	showed	a	more	
random	distribution	(higher	fractal	dimension).	However,	the	spa‐
tial	 structure	 of	 topographic	 slope	 showed	 the	 opposite	 effect.	
The	 fractal	 dimension	 of	 topographic	 slope	 was	 positively	 cor‐
related	with	the	variability	of	itself	(r	=	.67,	p	<	.001)	and	convexity	
(r	=	.69,	p	<	.001).	The	OAR	slope	tended	to	be	steeper	in	the	plots	
with	more	 species	 and	with	 a	 lower	mean	number	of	 individuals	
per	species.	Species	richness,	which	was	positively	correlated	with	
energy	availability	 (r	=	.61,	p	=	.01)	and	negatively	with	 the	mean	
number	of	individuals	per	species	(r	=	−.60,	p	=	.01),	accounted	for	
7.1%	of	total	variance	in	the	OAR	slope	but	much	more	than	other	
plot‐level	factors	(model	15	in	Table	2).

4  | DISCUSSION

For	thousands	of	tree	species	across	forests	worldwide,	we	identi‐
fied	a	pronounced	variation	in	the	shape	of	the	OAR	and	thus	the	
scaling	from	coarse‐	to	fine‐grain	occupancy.	Although	between‐
plot	differences	 in	 the	 frequency	distribution	of	OAR	slopes	ex‐
isted,	 and	 although	 we	 still	 identified	 a	 significant	 latitudinal	
gradient	 in	OAR	slopes,	 the	variation	occurred	predominantly	at	
the	 species	 level.	 The	 OAR	 slopes	 varied	 most	 strongly	 among	
species	within	plots	rather	than	among	plots	worldwide.	We	found	
that	both	species	traits	and	plot‐specific	environmental	conditions	
were	 able	 to	 explain	 some	 of	 the	 variation	 in	OARs,	 suggesting	
that	 there	 is	 scope	 for	generalizing	 the	OAR	beyond	 local	meas‐
urements.	But	again,	the	predictive	power	of	these	covariates	was	
limited.

In	contrast	to	the	work	on	the	OAR	to	date,	which	has	focused	
on	single	regions,	our	study	examined	the	relationship	over	a	global	
(if	incompletely	filled)	extent.	Earlier	work	has	shown	that	the	OAR	
slope	varies	across	spatial	grains	(Hartley	et	al.,	2004),	whereas	we	
found	a	distinct	variation	with	spatial	extent.	We	found	that	302	(out	
of	3,157)	species	that	occurred	in	multiple	plots	in	different	regions	
varied	greatly	in	their	OAR	slope,	and	there	was	limited	consistency	
among	plots	 (Figure	3).	This	highlights	 the	 importance	of	 local	ad‐
aptation	 in	 addition	 to	 stochastic	 or	 unmeasured	 drivers	 of	 local	
OARs.	This	region	and	plot	dependence	of	the	OAR	slopes	also	high‐
lights	 the	 importance	of	 extent	 in	OAR	assessments,	 because	 the	
OAR	slope	might	change	substantially	with	an	increasing	extent	of	
study.	The	capture	of	regional	or	site‐associated	species	traits	(e.g.,	
in	tree	diameter)	might	be	crucial,	rather	than	mean	species	traits,	to	
achieve	strong	predictive	fits.

Our	 predictions	 (Table	 1)	 regarding	 the	 significance	 and	direc‐
tionality	 of	 putative	 drivers	 of	 the	 OAR	 were	 largely	 confirmed.	
Large	 tree	 size	was	 associated	with	 the	 traits	 favouring	 seed	 dis‐
persal,	 such	as	height	of	 seed	 release	 (Díaz	et	al.,	2016),	 and	with	
seeds	 of	 a	 large	 size,	 which	 larger,	 more	 wide‐ranging	 animals	
disperse	more	favourably	(Seidler	&	Plotkin,	2006).	We	found	some‐
what	steeper	OAR	slopes	in	smaller‐diameter	trees,	supporting	the	

F I G U R E  4  Partial	residual	effect	on	occupancy–area	slope	(z)	of	
coarse‐grain	occupancy	(cgo)	at	the	grain	of	100	m	×	100	m	(a),	tree	
size	(b)	and	plot	species	richness	(c),	each	conditional	on	the	other	
two	predictors,	with	95%	confidence	intervals	(grey	shade),	based	
on	model	19	in	Table	2.	The	insets	illustrate	the	differences	in	
occupancy–area	relationship	in	extreme	conditions	of	explanatory	
variables.	The	low	species	richness	in	the	inset	is	for	the	Dongling	
plot	and	the	high	one	for	the	Yasuni	plot.	The	ranges	for	the	other	
two	variables	in	the	insets	are	subsets	of	the	entire	dataset	in	
which	their	values	are	smaller	than	their	2.5%	quantiles	and	larger	
than	their	97.5%	quantiles.	The	y	axes	of	the	insets	refer	to	median	
occupancy	(p)	for	relevant	subsets	at	each	grain	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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alternative	proposal	of	larger‐diameter	trees	potentially	being	better	
competitors	at	 smaller	 scales.	But	 this	decline	 in	OAR	slopes	with	
tree	 diameter	 was	 nonlinear,	 and	 medium	 to	 large	 trees	 showed	
weak	associations	with	slope.

Coarse‐grain	 occupancy	 had	 a	 negative	 effect	 on	 OAR	 slope,	
confirming	our	expectations	and	previous	reports	(Conlisk,	Conlisk,	
Enquist,	 Thompson,	 &	 Harte,	 2009;	Wilson,	 Thomas,	 Fox,	 Roy,	 &	
Kunin,	2004).	The	well‐known	fact	that	species	with	 large	popula‐
tions	tend	to	have	wide‐ranging	occupancy	(Borregaard	&	Rahbek,	
2010)	underpins	the	negative	effect.	In	contrast,	most	randomly	dis‐
tributed	species	have	low	abundances	(He,	Legendre,	&	LaFrankie,	
1997).	These	rare	species	have	high	large‐grain	occupancy	and	low	
fine‐grain	occupancy,	 and	 thus	 rapidly	 increase	 in	occupancy	with	
grains,	which	might	depress	the	decrease	in	OAR	slope	with	coarse‐
grain	 occupancy	 (i.e.,	 levelling	 off	 the	 relationship).	 Coarse‐grain	
occupancy	 alone	 provided	 a	 reasonably	 strong	 prediction	 of	 the	
OAR,	thus	highlighting	the	potential,	even	over	the	large	extents	an‐
alysed,	for	limited	coarser‐grain	survey	data	to	help	inform	fine‐scale	
occupancy.

The	 relatively	 limited	 variation	 in	 OAR	 slope	 between	 plots	
worldwide	 (compared	 with	 among	 species)	 implies	 that	 plot‐wide	
attributes	are	less	important	in	predicting	the	OAR	slope.	This	is	be‐
cause	 the	 spatial	 distribution	 of	 species,	which	 determines	OARs,	
depends	on	not	only	environmental	conditions	but	also	on	species‐
specific	adaptation	and	sensitivity	to	them	by	its	fundamental	niche	
and	traits	(McGill,	Enquist,	Weiher,	&	Westoby,	2006).	Even	so,	bi‐
otic	and	abiotic	variables	at	the	plot	level	significantly	shaped	OARs.	
Species	 richness	 explained	most	 of	 the	 between‐plot	 variation	 in	
OAR	slope.	This	might	be	attributable	to	the	strong	association	be‐
tween	the	richness	and	the	abundance	structure	and	fine‐grain	spa‐
tial	aggregation	of	species	 in	communities	 (He	&	Legendre,	2002).	
Mean	 abundance	 per	 species	 had	 a	 negative	 effect	 on	 the	 OAR	
slope,	which	became	insignificant	after	controlling	for	species	rich‐
ness.	This	 result	 supports	 the	hypothesis	 that	OAR	slope	declines	
as	the	mean	abundance	increases,	and	reflects	the	close	correlation	
between	the	mean	abundance	and	species	richness	(He	&	Legendre,	
2002).

The	 increasing	 trend	 of	 OAR	 slope	 towards	 the	 tropics	 can	 be	
attributed	 to	species	 richness	and	energy	availability,	both	of	which	
decrease	 with	 latitude	 (Evans	 et	 al.,	 2005).	We	 found	 that	 energy	
availability	 had	 a	 weak	 but	 positive	 effect	 on	 the	 occupancy–area	
slope.	This	could	be	the	result	of	intraspecific	competition	positively	
correlated	with	energy	(LaManna	et	al.,	2017),	which	decreases	mean	
abundance	 per	 species	 and	 fine‐grain	 spatial	 aggregation	 (He	 &	
Legendre,	2002).	However,	species	richness	and	energy	availability	are	
strongly	correlated.	It	is	thus	an	open	question	why	species	richness	
explained	most	of	the	among‐plot	variation	in	occupancy–area	slope,	
whereas	available	energy	explained	very	little.

We	found	that	elevation	range	and	variability	of	topographic	vari‐
ables	within	plots	exhibited	negative	effects	on	the	OAR	slope,	and	
spatially	 structured	 topographic	 factors	 suppressed	 the	 OAR	 slope	
in	general.	These	 results	 support	 the	conclusion	 that	 rugged	 topog‐
raphy	creates	patchier	habitats	and	thus	more	spatial	aggregation	of	

species	at	the	fine	grains	(Cáceres	et	al.,	2012;	Legendre	et	al.,	2009).	
In	contrast,	spatially	structured	terrain	slope	steepened	the	 increase	
in	occupancy	with	grains.	This	is	because	the	fractal	dimension	of	ter‐
rain	slope	was	positively	correlated	with	the	variability	of	topographic	
slope	and	convexity;	that	 is,	a	spatially	structured	topographic	slope	
implies	simple	terrain	and	a	lack	of	habitat	heterogeneity.

With	increasing	species	spatial	and	trait	data	there	is	a	poten‐
tially	exciting	possibility	of	a	model‐based	prediction	of	fine‐scale	
occurrences	of	species,	or	even	their	abundances,	over	 large	ex‐
tents	 (Jetz	 et	 al.,	 2016;	Kattge	 et	 al.,	 2011).	A	more	 generalized	
and	 predictable	 model	 of	 the	 OAR	 might	 have	 the	 potential	 to	
support	 the	 threat	 status	 assessment	 for	 species	 (Azaele	 et	 al.,	
2012).	 Here,	 we	 have	 shown	 that	 the	 coarser‐grain	 survey	 data	
combined	with	 species	 trait	data	and	environmental	 information	
indeed	 have	 the	 potential	 to	 improve	 our	 OAR	 predictions	 for	
thousands	of	species.	However,	although	statistically	significant,	
the	detected	effects	and	predictive	ability	attained	remained	lim‐
ited.	Obviously,	the	large	geographical	dispersion	of	plots	used	in	
the	 present	 study	 (at	 least,	 outside	 China)	 represented	 a	 highly	
challenging	 test	 for	 the	 statistical	 generalizability	 of	 OARs.	We	
measured	OARs	at	the	plot	 level.	When	extending	spatial	extent	
and	grains,	 therefore,	 the	grain	dependence	of	OARs	 (Hartley	et	
al.,	2004)	might	 imply	a	shift	 in	 the	drivers	of	OARs	with	grains.	
For	 future	work	 that	 is	 able	 to	draw	on	a	 larger	 set	of	 sites,	we	
suggest	considering	spatial	distance	as	an	additional	covariate	and	
extending	grains,	together	with	the	exploration	of	more	regionally	
parameterized	OAR	models	and	richer	trait	data.

4.1 | Conclusions

By	synthesizing	worldwide	forest	plot	data,	our	study	built	on	a	grow‐
ing	 array	 of	 fine‐scale	 occurrence	 data	 that	 allow	 the	 estimation	 of	
OARs.	 We	 asked	 whether	 species	 traits	 or	 environmental	 drivers	
predictably	affected	observed	OARs	and	whether	these	effects	were	
sufficiently	strong	to	enable	a	robust	prediction	of	unobserved	OARs	
and	fine‐scale	occupancies	for	different	regions	or	even	species.	Our	
analyses	 uncovered	 increasing	 OAR	 steepness	 towards	 the	 tropics	
and	 confirmed	 key	predictors	 of	 the	OAR.	But	 over	 a	 global	 extent	
and	over	3,500	tree	species,	the	variation	in	OAR	slopes	is	substantial	
and	not	fully	captured	by	traits	or	environmental	conditions.	Richer	re‐
gional	data	together	with	remotely	sensed	information	and	richer	trait	
data	might	soon	offer	additional	opportunities	for	a	more	generalized,	
cross‐scale	prediction	of	species	occupancy,	with	many	uses	in	ecol‐
ogy	and	conservation.
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