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1  | INTRODUC TION

Knowledge about the spatial distributions of organisms is funda‐
mental for both the study of biodiversity and its management, but 
is usually unavailable at sufficiently fine spatial detail (Hartley & 
Kunin, 2003; Jetz, McPherson, & Guralnick, 2012). Although ideally 
the spatial locations of all individuals of a species would be known, 
in reality the spatial grain (i.e., resolution) of species occurrence in‐
formation is rather coarse, usually from tens to hundreds of square 
kilometres (Hurlbert & Jetz, 2007). One way to unify the coarse‐ 
and fine‐grained occurrence of species is through the concept of 
“occupancy”, usually measured as the proportion of grid cells of a 
given area in which a species occurs. For a landscape with nested 
grids of different areas, the occupancy–area relationship (OAR) de‐
scribes how this proportion varies with the area of the grain at which 
it is measured (He & Condit, 2007; Kunin, 1998). This relationship is 
also known as the range–area relationship (Harte, Conlisk, Ostling, 
Green, & Smith, 2005), area–area curve (IUCN, 2010) or scaling pat‐
tern of occupancy (Hui et al., 2009).

The OAR is always monotonically increasing, usually in a nonlin‐
ear way (Hartley & Kunin, 2003), and the rate of its increase char‐
acterizes the spatial distribution of species across grains. Hereafter, 
we follow others (He & Condit, 2007) and refer to the rate of in‐
crease in occupancy with increasing grain size as an “OAR slope”, 

acknowledging that this is a measure of the steepness of a curve 
rather than a slope in the strict sense. When the grain is very small, 
with grid cells approximately the size of one tree, occupancy is simply 
the number of individuals divided by the number of all cells (Azaele, 
Cornell, & Kunin, 2012). Using nested grids of increasing cell area 
(i.e., increasing grain size), the OAR describes how individuals aggre‐
gate to occupy larger areas (Kunin, 1998). If a species is highly aggre‐
gated, it occupies few larger cells, thus occupancy increases slowly 
with increasing grain size. The same number of individuals scattered 
uniformly across cells would mean that occupancy increases rapidly 
with grain size (Figure 1), and a smaller number of individuals with 
the same degree of aggregation would exhibit an even steeper in‐
crease (He & Condit, 2007). The OAR slope thus captures informa‐
tion on both species abundance and spatial aggregation (Figure 1). It 
is also directly linked to the box‐counting fractal dimension of spatial 
distribution (Halley et al., 2004). The OAR can thus be extrapolated 
to grains at which we have no data on occupancy (Azaele et al., 2012; 
Kunin, 1998), allowing for downscaling from coarse‐grain occupan‐
cies to abundances or, conversely, upscaling from abundances to 
geographical occupancies.

Despite the fundamental role of OARs in connecting biological 
patterns across scales, accurate estimation of OARs is difficult for 
most species because of the scarcity of detailed information on 
spatial distribution (Barwell, Azaele, Kunin, & Isaac, 2014; Hui et al., 
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Methods: We used mixed‐effect regression to examine the observed shape of the 
OAR (its “slope”) against species‐specific and plot‐wide predictors: coarse‐grain oc‐
cupancy, tree size, plot species richness, energy availability and topographic 
complexity.
Results: We found large variation in OAR slopes, and the variation was strongest 
among species within plots. The OAR slopes showed a latitudinal trend and were 
steeper near the equator. As predicted, coarse‐grain occupancy and tree size nega‐
tively affected OAR slopes, whereas species richness had a positive effect and ex‐
plained most of the variance between plots. Although hypothesized directionalities 
were broadly confirmed, traits and environment had relatively limited overall predic‐
tive power.
Main conclusions: These results document the variation of the OAR for 3,157 species 
at near‐global extent. We found a latitudinal gradient in OAR slopes and confirmed 
key hypothesized predictors. But at this global extent and over the large set of species 
analysed, the remaining unexplained variation in OAR slopes was substantial. 
Nevertheless, this large‐scale empirical analysis of the OAR offers an initial step to‐
wards a more general use of OARs for the fine‐scale prediction of species distribu‐
tions and abundance.
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2009; IUCN, 2010). A generalized characterization of variation in 
OARs and evaluation of potential drivers of the relationship would 
have both basic and applied significance, including more accurate 

estimation of OARs for downscaling or upscaling occupancy of spe‐
cies. However, the potential mechanistic underpinnings and variation 
in OARs have remained surprisingly understudied, with empirical 

F I G U R E  1  Occupancy–area relationships (OAR) for four tree species from the 20 ha (500 m × 400 m) tree plots. Fitted lines follow the 
Nachman model (p=1−e−ca

z), where p is the proportional occupancy at a grid cell, a is area, and c and z are the parameters to fit. The value of 
z represents the OAR slope used for further analysis. (a) The OAR in log–log space, illustrating how saturated occupancies are fitted by the 
Nachman model. (b) The OAR in Nachman‐transformed space {x axis: ln(a); y axis: ln[−ln(1 − p)]}; the intercept corresponds to the parameter 
c, and the slope to the parameter z. The filled circles are occurrences at 1 m grain (N is their total number). (c–f) Variation in OAR slopes 
can arise either from differences in spatial aggregation or from variation in N. The widespread species Aporusa aurea, Rinorea viridifolia 
and Brosimum lactescens all reach saturated occupancy (p = 1) at grains below the coarsest possible; this is the grain of saturation (SA). 
Mangifera indica is a rare species that reaches the so‐called grain of endemism (E), at which all of their individuals are contained in a single 
grid cell. Occupancy values cannot be lower than A/A0 (the hypotenuse of the shaded grey triangle in panels a and b), where A is the area 
of a grid cell at a given grain, and A0 is the total area of the plot (A0 = 2 × 10

5 m2), because species cannot occupy less than one grid cell at 
each scale. In (b), the y axis is positively infinite (dotted line), because the proportional occupancy is Nachman‐transformed; we assume 
.999 to be the approximation of the first saturated occupancy (p = 1) for illustrating the grain of saturation (open circles) in the Nachman 
transformation; cgo is the proportional occupancy at 100 m grain (i.e., 104 m2) 
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demonstrations limited to a relatively small number of regions and 
species. Briefly, Hartley, Kunin, Lennon, and Pocock (2004) exam‐
ined how OARs vary across grains in 16 British plant species, and 
Pocock, Hartely, Telfer, Preston, and Kunin (2006) and Barwell et 
al. (2014) investigated how particular habitats and species traits are 
correlated with OAR in rare British plants and dragonflies.

In this study, we set out to explore the variation in OARs and test 
key potential predictors of among‐species and among‐site OAR vari‐
ation and to evaluate the generality of these predictors. Specifically, 
we sought to quantify the OAR for trees worldwide and document 
the consistency and predictability of this relationship among species 
and forests. We hypothesized that environmental (biotic and abiotic) 
attributes of landscapes, biological traits of species, and emergent spe‐
cies attributes, such as their coarse‐grain occupancy (cgo), all affect 
the OAR in a predictable way (Table 1).

1.1 | Environmental drivers of OAR

Environmental conditions can affect population size and its spatial 

structure (Chesson, 2003; Condit, Engelbrecht, Pino, Pérez, & Turner, 

2013). For example, habitats with high energy availability and more 

resources may support more individuals, increase local population 

sizes (Evans, Warren, & Gaston, 2005), and thus result in a lower rate 

of increase in occupancies with increasing grain size (i.e., a decrease 

in OAR slope). But high energy or resource availability may depress 

species abundance and spatial aggregation via increasing intraspecific 

or interspecific competition for resources, or via increasing mortality 

of species or decreasing their recruitment owing to natural enemies 

(pathogens and herbivores) (Schemske, Mittelbach, Cornell, Sobel, 

& Roy, 2009; Wright, 2002). Elevated energy or resource availability 

would, in that case, steepen the OAR slope.

TA B L E  1  Hypothesized rate of increase in occupancy with grain [i.e., how the slope of the occupancy–area relationship (OAR) might be 
influenced by plot‐ and species‐specific attributes]

Predictors Rationale for hypotheses Expected effect Our results

Plot level

I. Total available resources or energy

Energy availability High energy supports more individuals, increases population 
sizes and depresses the OAR slope. Alternatively, it 
intensifies intraspecific competition, reduces population 
sizes, disperses individuals randomly and steepens the OAR 
slope

Steeper or shallower Steeper

II. Heterogeneity of abiotic conditions

Elevation range Large elevation difference produces patchy habitats and 
increases spatial aggregation of individuals, reducing the 
OAR slope

Shallower Shallower

Variability of slope, 
convexity and elevation

High variability of topography creates more habitats in 
which species specialize, causing individuals to be more 
spatially aggregated, lowering the OAR slope

Shallower Shallower

Fractal dimension (F) of 
terrain slope, convexity and 
mean elevation

If individuals track environment, the OAR slope should 
increase with increasing random distribution of habitats 
(i.e. fractal dimension, F)

Steeper Steeper, except for F 
of terrain slope

III. Biotic conditions

Species richness Species richness is positively correlated with intraspecific 
competition, the increase of which decreases conspecific 
abundance and makes the species more dispersed, which 
would steepen the OAR slope

Steeper Steeper

Mean number of individuals 
per species

A larger number of individuals means higher occupancy at 
fine grains and thus shallower OAR

Shallower Shallower

Species level

Tree size Large‐statured tree species out‐compete small ones in use 
of energy or resources, and thus are more abundant, which 
depresses the OAR slope. On the contrary, large trees 
facilitate seed dispersal, making individuals more dispersed, 
steepening the OAR slope.

Shallower or steeper Shallower, with 
levelling off with 
increasing tree size

Coarse‐grain occupancy Spatially rarer species (i.e., those with small coarse‐grain 
occupancy) are increasingly unlikely to have shallow OAR, 
owing to a hard boundary on minimum occupancy at the 
finest grain measured, whereas spatially common species 
(i.e., those with large coarse‐grain occupancy) can have 
either small or large fine‐gain occupancy, thus either steep 
or shallow OAR

Shallower, with 
levelling off as 
coarse‐grain 
occupancy increases

Shallower, with 
levelling off with 
increasing coarse‐
grain occupancy
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In addition to the total available energy and resources, their spa‐
tial variability and structure (arrangement) can influence the distri‐
bution of individuals on the landscape, because most species have 
specific environmental requirements (Condit et al., 2013; Harms, 
Condit, Hubbell, & Foster, 2001). Environmental conditions are often 
spatially autocorrelated or structured (Legendre, 1993). High spatial 
variability or dispersion of environmental conditions can translate 
into a greater diversity of habitats, thus increasing the probability of 
species–habitat association and spatial aggregation of species, thus 
weakening the increase of occupancies with grains. In turn, spatial 
structure of environments defines how they are arranged in space; 
patchy or spatially structured environments can reinforce the spatial 
aggregation of species, thus depressing the increase of occupancies 
with grains.

Detailed maps of fine‐grain energy and resources are rarely avail‐
able, but it is possible to use topographic factors, such as elevation, 
convexity and slope, as a comprehensive proxy for habitats (Cáceres 
et al., 2012; Legendre et al., 2009). Large elevation difference gen‐
erates heterogeneity of environmental conditions, increasing spatial 
aggregation of species (Chesson, 2003; Davies et al., 2007), thus de‐
pressing the OAR slope.

The species richness is often higher in areas with high energy 
availability and environmental heterogeneity, both of which are seen 
as facilitators of coexistence (Evans et al., 2005; Stein, Gerstner, 
& Kreft, 2014). But beyond these broad‐scale richness–energy 
availability associations, globally, conspecific negative density de‐
pendence is positively correlated with species richness (Johnson, 
Beaulieu, Bever, & Clay, 2012; LaManna et al., 2017). Given that 
the density dependence can reduce both population size and its 
spatial aggregation, species richness may be positively correlated 
with OAR slope. We expect the potential effect of species richness 
on the occupancy–area slope to be equivocal and dependent on 
the prevalence and directionality of niche segregation and density 
dependence processes. Given that a smaller number of individuals 
often corresponds to a steeper OAR slope (He & Condit, 2007), OAR 
slopes are expected to decrease with the mean number of individu‐
als per species.

1.2 | Traits as drivers of OAR

Traits are known to influence species abundances and spatial distri‐
butions (Rüger, Wirth, Wright, & Condit, 2012; Westoby & Wright, 
2006) and thus by extension might also affect the scale dependence 
of their occurrence. For example, tree size at maturity reflects both 
the strategy of species to compete for light, water and nutrients and 
also their ability to disperse (Díaz et al., 2016; Westoby, 1998). We 
hypothesize that because large‐sized trees tend to disperse farther 
(Thomson, Moles, Auld, & Kingsford, 2011), they might show a more 
regular spatial distribution, resulting in a steeper occupancy–area 
relationship. Alternatively, a large‐sized tree might more readily out‐
compete smaller ones for resources at small scales (Lutz et al., 2018), 
leading the large‐sized tree species to be more abundant and have a 
shallower increase of occupancy with area.

Coarse‐grain occupancy (i.e., the proportion of cells occupied at 
coarser spatial scale) is information that is often more readily gath‐
ered than fine‐scale occurrence. For a given analysis grid (e.g., of 
100 m × 100 m cells in the case of tree plots; variable cgo in Figure 1), 
it represents the maximum occupancy attained by a species. It distin‐
guishes species that are spatially rare (those occurring in only a small 
portion of the landscape, cgo ˂˂ 1) from those that are common (e.g., 
occurring in all cells, cgo = 1). Coarse‐grain occupancy thus emerges 
as a joint species property, or emergent attribute, from both species 
traits and the local environment. Spatially common species (cgo ≈ 1) 
can have either steep or shallow OARs, but with increasing spatial 
rarity of species (cgo < 1) shallow relationships become increasingly 
unlikely, because of a hard boundary on minimum occupancy owing 
to the finest spatial grain measured (see Figure 1). Given that the 
occurrence of species is much more readily surveyed and known at 
coarser spatial grains, the information value of coarse‐grain infor‐
mation for predicting fine‐grain occupancy has practical significance 
but has seen only limited evaluation over large spatial scales.

In this study, we quantify OARs for a large dataset of 3,157 tree 
species based on 17 fully mapped forest plots of 20 ha worldwide. 
We use this compilation to ask the following questions:

1.	 How much does the OAR vary among species and among 
plots?

2.	 Do OAR slopes vary as expected with key species traits and envi‐
ronmental conditions?

3.	 How large is the predictive ability of these environment and trait 
associations, and do they offer scope for the prediction of OAR 
for new species or locations?

2  | METHODS

We selected 17 forest plots ≥ 20 ha from the Smithsonian Forest 
Global Earth Observatory (ForestGEO; https://forestgeo.si.edu/) 
and the Chinese Forest Biodiversity Monitoring Network (CForBio; 
http://www.cfbiodiv.org/english) (Figure 1). Each of the plots is in 
relatively undisturbed forest. For each plot, we selected a 20 ha 
(400 m × 500 m) subplot (starting at the coordinate origin of the plot), 
except at the Yosemite and Wind River plots, where we used a 21 ha 
subplot, 300  × 700 m. Topography differs greatly among plots: the 
elevation difference within individual plots is as low as 17 m and as 
high as 299 m. Plot censuses follow the centre for tropical forest sci‐
ence (CTFS) protocol (Condit, 1998). All individuals ≥ 1 cm diameter 
at breast height (d.b.h.) were measured, mapped and identified taxo‐
nomically. To unify taxonomy among plots, we used the Taxonomic 
Name Resolution Service v.3.0 (http://tnrs.iplantcollaborative.org) 
and the Chinese Virtual Herbarium (www.cvh.ac.cn). We excluded 
289 unidentified species: 107 from the Banna and Korup plots (leav‐
ing 358 and 316 identified species, respectively), 57 from the Pasoh 
plot (723 identified), 11 from the Yasuni plot (1,015 identified), four 
from the Lienhuachih plot (137 identified) and one from each of the 

https://forestgeo.si.edu/
http://www.cfbiodiv.org/english
http://tnrs.iplantcollaborative.org
http://www.cvh.ac.cn
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Baotianman, Dongling and Yosemite plots. Most (70%) of unidenti‐
fied species were rare, with occurrence of < 1/ha. We also excluded 
species that were represented by only one stem. After pruning, the 
resulting dataset for this study had 3,157 unique species, with 3,546 
different OARs owing to the species that occurred in multiple plots.

2.1 | Occupancy–area relationship

In each plot, we examined the occupancy of each species in grids of 
square cells having sides of 1, 2, 4, 5, 10, 20, 25, 50 and 100 m. To 
characterize the OAR, we quantified occupancy as the proportion 
(p) of occupied cells and related it to the area (α) of the grid cell, or 
the grain. The slope (z) of OAR quantifies how quickly occupancy 
aggregates from fine to coarse grain and defines the shape of OAR.

To choose the most appropriate function for the OAR, we per‐
formed a preliminary analysis to simulate and assess three commonly 
fitted models: Nachman, power‐law and logistic models (Azaele et 
al., 2012; see Supporting Information Appendix S1). Analytically, 
and based on a simulation of complete spatial randomness (CSR; 
see Supporting Information Appendix S1, Fig. S1.1), we found that 
the slopes (z) of the power‐law and logistic models depended on 
grain and population density. Only the Nachman model consistently 
showed a slope of one under CSR. Based on the simulation of extreme 
spatial aggregation (ESA; see Supporting Information Appendix S1, 
Fig. S1.1), we found that the slope (z) of all the three models de‐
creased with increasing abundance, and approached one as abun‐
dances decreased. Those simulations indicated negative effects of 
both species abundances and spatial aggregation on OAR slope with 
strong interaction: OAR slopes increasingly decreased with species 
abundances as spatial aggregation increased, and vice versa (see 
Supporting Information Appendix S1, Fig. S1.2). Therefore, only the 
Nachman model clearly defined aggregation, with the slope z < 1 in‐
dicating spatial aggregation. We therefore used only the Nachman 
model in further analyses.

The Nachman model is often fitted using linear regression on 
transformed scale–area data, {i.e., log[−log(1 − p)] against log (α)}. 
However, this transformation has been shown to give too much 
weight to the occupancies at small scales (Packard, Birchard, & 
Boardman, 2011), and it fails as the occupancy approaches one. 
Nonlinear regression, in contrast, allows an asymptote of one when 
cαz >> 1 (where c is a parameter to fit). We thus adopted nonlinear 
regression to fit the Nachman model over the grains of 1, 2, 4, 5, 
10, 20, 25, 50 and 100 m (Figure 1). Furthermore, we used slopes (z 
values) emerging from this fitting as the response variable to charac‐
terize the variation in slope among species and among plots and to 
explore their ecological predictors.

2.2 | Predictors of occupancy–area slopes

We considered variables correlating with z, the occupancy–area 
“slope”, at two levels: species and plots. At the plot level, we used 
three groups of environmental predictors to characterize the differ‐
ences in abiotic and biotic conditions (Table 1). I. Energy and resource 

availability. We used ambient energy, measured as actual evapotran‐
spiration extracted from the MODIS (Moderate Resolution Imaging 
Spectroradiometer) MOD 16A3 product that provides average an‐
nual mean evapotranspiration for the years 2000–2013 at 1 km 
resolution (Mu, Zhao, & Running, 2011), which captures both heat 
and water essential for plants. II. Heterogeneity of abiotic condi‐
tions. We assessed a total of three variables: (a) elevation range, the 
maximal difference of elevation that the plot spans, measuring the 
topographic complexity of each plot; (b) spatial structure (arrange‐
ment) of three topographic variables (slope, mean elevation and 
convexity), quantified by fractal dimension of the variables based on 
variograms in each plot, with high values meaning more random dis‐
tribution (Constantine & Hall, 1994); and (c) spatial variability of the 
three topographic variables, defined as the standard deviation of the 
variables among grid cells in each plot. All the three variables were 
calculated for each 20 m × 20 m cell in each plot. The mean eleva‐
tion of a cell was defined as the mean of the elevation values at its 
four corners. Slope was the mean angular deviation from horizontal 
of each of the four triangular planes formed by connecting three of 
its corners. Convexity was the elevation of the cell of interest minus 
the mean elevation of the eight surrounding cells. For the edge cells, 
convexity was the elevation of the centre point minus the mean of 
the four corners. III. Biotic conditions. Here, we evaluated: (a) spe‐
cies richness, counted as the total number of woody species in each 
plot; and (b) the mean number of individuals per species, calculated 
as the sum of the individual number for all species in a plot divided 
by the total number of species.

As species‐level predictors (traits) we included tree size, mea‐
sured as the maximal diameter at breast height for a species in each 
plot, and coarse‐grain occupancy, measured as the occupancy at a 
grain of 100 m × 100 m.

2.3 | Statistical models

We used linear mixed‐effect models (Pinheiro & Bates, 2000) to 
evaluate the effect of plot conditions and species attributes as pre‐
dictors on the slopes (z) of the OARs. Both plot and species were 
assigned random intercepts, and we assumed that those random 
intercepts were independent of each other. Furthermore, random 
slopes by plot were added to the species‐specific predictors of 
interest.

First, we started with a null model for the OAR slope (z), hav‐
ing no predictors, only plot and species random intercepts. Second, 
to test the effect (including significance and direction) of plot‐level 
variables on OARs, we examined models with all the possible com‐
binations of 10 plot‐level predictors and selected those with each 
predictor having a variance inflation factor (VIF) less than two and 
p ≤ .05 (i.e., all predictors involved in the models are significant and 
independent of each other). Third, to test the effect of species‐spe‐
cific predictors on OARs, we built three separate types of models 
for the two species‐level predictors: two with a single species‐spe‐
cific predictor, and the other combining tree diameter and coarse‐
grain occupancy as predictors. Fourth, we also constructed a model 
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combining both sets of predictors. For each model involving species‐
level variables, we examined all the possible combinations of the 
fixed‐ and random‐slope terms of interest (the terms assigned ran‐
dom slope must also be represented as fixed effects) and selected 
the one with the smallest corrected Akaike information criterion 
(AICc; see Supporting Information Appendix S2).

Model residuals using raw values of slope z were negatively 
skewed (Figure 2); therefore, we instead used the transformation −
log(θ − z), where θ is a parameter that we adjusted to get the skew‐
ness of residuals as close to zero as possible. Tree diameter was also 
highly skewed; therefore, we first log10‐transformed it. All the vari‐
ables were then standardized to zero mean and variance of one. We 
used second‐order polynomials to model the potentially nonlinear 

effect of tree diameter and cgo. We set the VIF of two as the thresh‐
old for testing collinearity among predictors (Zuur, Ieno, & Elphick, 
2010), and no models exceeded that threshold.

All mixed‐effect models and model selection were run using the R 
package “lmerTest” v.2.0‐29 (Kuznetsova, Brockhoff & Christensen, 
2015) and “MuMIn” v.1.14.0 (Bartoń, 2015), and we visualized the ef‐
fects of individual predictors on OAR slope using the R package “vis‐
reg” v.2.2‐0 (Breheny & Burchett, 2015), and calculated the fractal 
dimension of topographic variables using R function “RFfractaldim” 
(Schlather et al., 2017). Effect sizes of all predictors were measured 
by: (a) marginal coefficients of determination (R2

m
), the proportion 

of total variance explained by the fixed effects alone; and (b) the 
so‐called partial conditional coefficients of determination R2

pc
, the 

F I G U R E  2  Locations of study forest plots worldwide and variations in the slope (z) of the occupancy–area relationship (OAR slope) 
among species and across plots. (a) Overall frequency distribution of the slopes from 17 forest plots worldwide (3,546 OARs for 3,157 
unique species). (b) Geographical locations and frequency distributions of the slopes and number of species (in parenthesis) per plot. Red 
vertical lines show the overall median of the slope across all plots; dashed green vertical lines are medians of the slopes in individual plots. 
The medians of individual plots are also represented by the point colours from low (green) to high (red) values. The y axes for frequency 
distribution are all in density. The bottom left inset shows the axis scales for all OAR slope frequency distributions shown in (b) 
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proportion of total variance accounted for by both the fixed and 
random slope effects of variables of interest. The R2

pc
 is calculated 

by subtracting the random intercept effects from the conditional co‐
efficient of determination (the total variance explained by both, all 
fixed and all random factors; Johnson, 2014; Nakagawa & Schielzeth, 
2013). The fixed effect is the mean effect of species‐ or plot‐spe‐
cific predictors over the entire set of species or plots, whereas the 
random slope effect represents the species‐specific deviation from 
the mean. For R scripts of our main analyses, see the Supporting 
Information (Appendix S2).

3  | RESULTS

3.1 | Variation in OARs among species and plots 
worldwide

The OAR, measured by its slope (z; i.e., rate of increase in occu‐
pancy with grains), showed strong variation among species, ranging 
from the shallowest increase in occupancy observed in Anaxagorea 
panamensis (Family: Annonaceae) on the Barro Colorado Island plot 
(z = .248) to Aquilaria malaccensis (Family: Thymelaeaceae) at Pasoh 
with the steepest slope (z = 1.331) (Figure 2a). The largest pro‐
portion of the variance of OAR slope was from within‐group (plot 
and species) error (i.e., the residuals in the null model), at 77.5%. 
Next was the variance between the groups by species (i.e., the 
random species intercepts), at 14.9%. The between‐plot variance 
(i.e., the random plot intercepts) was only 7.6%. The OAR slope 
varied geographically (Figure 2b), with its median value per plot 
increasing towards the equator (r = −.68, p = .003) from .73 at lati‐
tude 40° N (the Dongling plot) to .92 at latitude .69° S (the Yasuni 
plot) (Supporting Information Table S1). Plot‐level skewness of the 
OAR slopes changed from negative to positive from the equator 
to higher latitudes (range: −.89 to .26, r = .50, p = .04). There were 
302 (out of 3,157) species occurring in multiple plots. The OAR 
slope had a very weak correlation between plots for the same spe‐
cies [Figure 3a; i.e., the slope varied greatly among plots within the 
same species, even for the species shared in the plots close to each 
other (Figure 3b,c)].

3.2 | Species traits and plot‐level environment as 
predictors of the OAR

We found significant associations of the observed OAR slopes with 
species‐ and plot‐level predictors (Table 2), but a large amount (88%; 
see model 19 in Table 2) of the slope variance remained unexplained, 
highlighting the importance of local or stochastic processes. The OAR 
slope declined significantly and levelled off slightly with increas‐
ing coarse‐grain occupancy, accounting for 10.7% of the variance in 
OAR slope, of which 10.5% was within plots (model 17 in Table 2; 
Figure 4a). Adult tree size also had a nonlinear effect on the OAR 
slope, but weaker than coarse‐grain occupancy: it explained 8.9% 
of the variance of the slope, and 6.1% when examined within plots 
(model 16 in Table 2). Smaller species tended to have steeper slopes, 
but this diameter–slope association leveled off towards large diam‐
eters (Table 2; Figure 4b). These two traits together explained 13.8% 
of total variance in the OAR slope, and 11% when examined within 
plots (model 18 in Table 2).

Plot‐level attributes significantly affected the OAR slope and 
explained a small portion of total variance in OAR slope but a ma‐
jority of between‐plot variance (models 1–15 in Table 2). Energy 
availability had a positive effect and heterogeneity of abiotic con‐
ditions generally a negative effect on the OAR slope (Table 2). The 
OAR slope tended to be shallower in areas with higher variability 
of topographic factors, especially convexity and mean elevation, 

F I G U R E  3  The pairwise relationships of the occupancy–area 
slope (z) for all the species shared in multiple forest plots (a), for 
the species occurring in the Barro Colorado Island (BCI) and Yasuni 
plots (b) and for the species common in the Gutian and Tiantong 
plots (c) [Colour figure can be viewed at wileyonlinelibrary.com] 
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although the slope variability was not significant. The OAR slope 
was also affected by the spatial structure of environmental con‐
ditions and was steeper when convexity patterns showed a more 
random distribution (higher fractal dimension). However, the spa‐
tial structure of topographic slope showed the opposite effect. 
The fractal dimension of topographic slope was positively cor‐
related with the variability of itself (r = .67, p < .001) and convexity 
(r = .69, p < .001). The OAR slope tended to be steeper in the plots 
with more species and with a lower mean number of individuals 
per species. Species richness, which was positively correlated with 
energy availability (r = .61, p = .01) and negatively with the mean 
number of individuals per species (r = −.60, p = .01), accounted for 
7.1% of total variance in the OAR slope but much more than other 
plot‐level factors (model 15 in Table 2).

4  | DISCUSSION

For thousands of tree species across forests worldwide, we identi‐
fied a pronounced variation in the shape of the OAR and thus the 
scaling from coarse‐ to fine‐grain occupancy. Although between‐
plot differences in the frequency distribution of OAR slopes ex‐
isted, and although we still identified a significant latitudinal 
gradient in OAR slopes, the variation occurred predominantly at 
the species level. The OAR slopes varied most strongly among 
species within plots rather than among plots worldwide. We found 
that both species traits and plot‐specific environmental conditions 
were able to explain some of the variation in OARs, suggesting 
that there is scope for generalizing the OAR beyond local meas‐
urements. But again, the predictive power of these covariates was 
limited.

In contrast to the work on the OAR to date, which has focused 
on single regions, our study examined the relationship over a global 
(if incompletely filled) extent. Earlier work has shown that the OAR 
slope varies across spatial grains (Hartley et al., 2004), whereas we 
found a distinct variation with spatial extent. We found that 302 (out 
of 3,157) species that occurred in multiple plots in different regions 
varied greatly in their OAR slope, and there was limited consistency 
among plots (Figure 3). This highlights the importance of local ad‐
aptation in addition to stochastic or unmeasured drivers of local 
OARs. This region and plot dependence of the OAR slopes also high‐
lights the importance of extent in OAR assessments, because the 
OAR slope might change substantially with an increasing extent of 
study. The capture of regional or site‐associated species traits (e.g., 
in tree diameter) might be crucial, rather than mean species traits, to 
achieve strong predictive fits.

Our predictions (Table 1) regarding the significance and direc‐
tionality of putative drivers of the OAR were largely confirmed. 
Large tree size was associated with the traits favouring seed dis‐
persal, such as height of seed release (Díaz et al., 2016), and with 
seeds of a large size, which larger, more wide‐ranging animals 
disperse more favourably (Seidler & Plotkin, 2006). We found some‐
what steeper OAR slopes in smaller‐diameter trees, supporting the 

F I G U R E  4  Partial residual effect on occupancy–area slope (z) of 
coarse‐grain occupancy (cgo) at the grain of 100 m × 100 m (a), tree 
size (b) and plot species richness (c), each conditional on the other 
two predictors, with 95% confidence intervals (grey shade), based 
on model 19 in Table 2. The insets illustrate the differences in 
occupancy–area relationship in extreme conditions of explanatory 
variables. The low species richness in the inset is for the Dongling 
plot and the high one for the Yasuni plot. The ranges for the other 
two variables in the insets are subsets of the entire dataset in 
which their values are smaller than their 2.5% quantiles and larger 
than their 97.5% quantiles. The y axes of the insets refer to median 
occupancy (p) for relevant subsets at each grain [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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alternative proposal of larger‐diameter trees potentially being better 
competitors at smaller scales. But this decline in OAR slopes with 
tree diameter was nonlinear, and medium to large trees showed 
weak associations with slope.

Coarse‐grain occupancy had a negative effect on OAR slope, 
confirming our expectations and previous reports (Conlisk, Conlisk, 
Enquist, Thompson, & Harte, 2009; Wilson, Thomas, Fox, Roy, & 
Kunin, 2004). The well‐known fact that species with large popula‐
tions tend to have wide‐ranging occupancy (Borregaard & Rahbek, 
2010) underpins the negative effect. In contrast, most randomly dis‐
tributed species have low abundances (He, Legendre, & LaFrankie, 
1997). These rare species have high large‐grain occupancy and low 
fine‐grain occupancy, and thus rapidly increase in occupancy with 
grains, which might depress the decrease in OAR slope with coarse‐
grain occupancy (i.e., levelling off the relationship). Coarse‐grain 
occupancy alone provided a reasonably strong prediction of the 
OAR, thus highlighting the potential, even over the large extents an‐
alysed, for limited coarser‐grain survey data to help inform fine‐scale 
occupancy.

The relatively limited variation in OAR slope between plots 
worldwide (compared with among species) implies that plot‐wide 
attributes are less important in predicting the OAR slope. This is be‐
cause the spatial distribution of species, which determines OARs, 
depends on not only environmental conditions but also on species‐
specific adaptation and sensitivity to them by its fundamental niche 
and traits (McGill, Enquist, Weiher, & Westoby, 2006). Even so, bi‐
otic and abiotic variables at the plot level significantly shaped OARs. 
Species richness explained most of the between‐plot variation in 
OAR slope. This might be attributable to the strong association be‐
tween the richness and the abundance structure and fine‐grain spa‐
tial aggregation of species in communities (He & Legendre, 2002). 
Mean abundance per species had a negative effect on the OAR 
slope, which became insignificant after controlling for species rich‐
ness. This result supports the hypothesis that OAR slope declines 
as the mean abundance increases, and reflects the close correlation 
between the mean abundance and species richness (He & Legendre, 
2002).

The increasing trend of OAR slope towards the tropics can be 
attributed to species richness and energy availability, both of which 
decrease with latitude (Evans et al., 2005). We found that energy 
availability had a weak but positive effect on the occupancy–area 
slope. This could be the result of intraspecific competition positively 
correlated with energy (LaManna et al., 2017), which decreases mean 
abundance per species and fine‐grain spatial aggregation (He & 
Legendre, 2002). However, species richness and energy availability are 
strongly correlated. It is thus an open question why species richness 
explained most of the among‐plot variation in occupancy–area slope, 
whereas available energy explained very little.

We found that elevation range and variability of topographic vari‐
ables within plots exhibited negative effects on the OAR slope, and 
spatially structured topographic factors suppressed the OAR slope 
in general. These results support the conclusion that rugged topog‐
raphy creates patchier habitats and thus more spatial aggregation of 

species at the fine grains (Cáceres et al., 2012; Legendre et al., 2009). 
In contrast, spatially structured terrain slope steepened the increase 
in occupancy with grains. This is because the fractal dimension of ter‐
rain slope was positively correlated with the variability of topographic 
slope and convexity; that is, a spatially structured topographic slope 
implies simple terrain and a lack of habitat heterogeneity.

With increasing species spatial and trait data there is a poten‐
tially exciting possibility of a model‐based prediction of fine‐scale 
occurrences of species, or even their abundances, over large ex‐
tents (Jetz et al., 2016; Kattge et al., 2011). A more generalized 
and predictable model of the OAR might have the potential to 
support the threat status assessment for species (Azaele et al., 
2012). Here, we have shown that the coarser‐grain survey data 
combined with species trait data and environmental information 
indeed have the potential to improve our OAR predictions for 
thousands of species. However, although statistically significant, 
the detected effects and predictive ability attained remained lim‐
ited. Obviously, the large geographical dispersion of plots used in 
the present study (at least, outside China) represented a highly 
challenging test for the statistical generalizability of OARs. We 
measured OARs at the plot level. When extending spatial extent 
and grains, therefore, the grain dependence of OARs (Hartley et 
al., 2004) might imply a shift in the drivers of OARs with grains. 
For future work that is able to draw on a larger set of sites, we 
suggest considering spatial distance as an additional covariate and 
extending grains, together with the exploration of more regionally 
parameterized OAR models and richer trait data.

4.1 | Conclusions

By synthesizing worldwide forest plot data, our study built on a grow‐
ing array of fine‐scale occurrence data that allow the estimation of 
OARs. We asked whether species traits or environmental drivers 
predictably affected observed OARs and whether these effects were 
sufficiently strong to enable a robust prediction of unobserved OARs 
and fine‐scale occupancies for different regions or even species. Our 
analyses uncovered increasing OAR steepness towards the tropics 
and confirmed key predictors of the OAR. But over a global extent 
and over 3,500 tree species, the variation in OAR slopes is substantial 
and not fully captured by traits or environmental conditions. Richer re‐
gional data together with remotely sensed information and richer trait 
data might soon offer additional opportunities for a more generalized, 
cross‐scale prediction of species occupancy, with many uses in ecol‐
ogy and conservation.
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