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A B S T R A C T   

To identify areas of high biodiversity and prioritize conservation efforts, it is crucial to understand the drivers of 
species richness patterns and their scale dependence. While classified land cover products are commonly used to 
explain bird species richness, recent studies suggest that unclassified remote-sensed images can provide equally 
good or better results. In our study, we aimed to investigate whether unclassified multispectral data from Landsat 
8 can replace image classification for bird diversity modeling. Moreover, we also tested the Spectral Variability 
Hypothesis. 

Using the Atlas of Breeding Birds in the Czech Republic 2014-2017, we modeled species richness at two spatial 
resolutions of approx. 131 km2 (large squares) and 8 km2 (small squares). As predictors of the richness, we 
assessed 1) classified land cover data (Corine Land Cover 2018 database), 2) spectral heterogeneity (computed in 
three ways) and landscape composition derived from unclassified remote-sensed reflectance and vegetation 
indices. Furthermore, we integrated information about the landscape types (expressed by the most prevalent land 
cover class) into models based on unclassified remote-sensed data to investigate whether the landscape type 
plays a role in explaining bird species richness. 

We found that unclassified remote-sensed data, particularly spectral heterogeneity metrics, were better pre
dictors of bird species richness than classified land cover data. The best results were achieved by models that 
included interactions between the unclassified data and landscape types, indicating that relationships between 
bird diversity and spectral heterogeneity vary across landscape types. 

Our findings demonstrate that spectral heterogeneity derived from unclassified multispectral data is effective 
for assessing bird diversity across the Czech Republic. When explaining bird species richness, it is important to 
account for the type of landscape and carefully consider the significance of the chosen spatial scale.   

1. Introduction 

Explaining why biodiversity varies in space, and being able to 
accurately map it, are crucial areas of research in basic ecology, with 
implications for applied nature and landscape protection. However, it is 
logistically impossible to conduct sampling of species distributions that 
would be comprehensive enough to determine biodiversity over large 
regions, and fast enough to assess changes in biodiversity over time. 

Having a set of simple indicators (proxies) of biodiversity would be 
beneficial to researchers and conservationists. For instance, in the 
context of bird diversity, specific bird species occurrences (Morelli et al. 
2017; Roth and Weber, 2008) and/or landscape composition and 
structure (Billeter et al. 2008; Cooper et al., 2020; Lausch et al. 2016; 
Morelli et al. 2018; Moudrý et al., 2023b; Panda et al., 2021) have been 
proposed as useful indicators of species/functional diversity. Moreover, 
it is well-established that high habitat heterogeneity is linked to high 
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biodiversity (Stein et al. 2014). 
With the increasing availability of open satellite remote-sensed data, 

landscape composition, structure, and heterogeneity can be described in 
various ways. A traditional method is based on the supervised classifi
cation of multispectral imagery (Ma et al., 2017; Tang et al., 2007; 
Zhang and Zhu, 2011), i.e., distinguishing individual vegetation types or 
land cover classes, such as pastures, forests, deserts, or wetlands (He 
et al. 2015; Leyequien et al. 2007), and deriving landscape character
istics from these classified maps. As shown in many studies (Linden
mayer et al., 2002; Morelli et al., 2018; Walz, 2011), even simple 
landscape metrics such as the area of individual classes, patch richness, 
or edge density (Šímová and Gdulová, 2012) can indicate taxonomic 
and/or functional diversity of animals, albeit with some limitations. 

An important limitation in species diversity modeling based on 
classified land cover information data lies in the fact that the modeled 
link between biodiversity and landscape characteristics depends on 
spatial scale (extent and minimum mapping unit or pixel size, also 
known as grain or resolution (Schindler et al., 2013)), time and thematic 
resolution, and classification accuracy (Šímová et al. 2019). Several 
freely available products provide classified land cover data at the extent 
of whole countries or continents (e. g. CLC – Corine Land Cover, NLCD – 
National Land Cover Database) or even worldwide (e. g. GLC – Global 
Land Cover Project). The spatial resolution of such classified land cover 
maps is usually coarse (for example, the minimum mapping unit of 
Corine is 0.25 km2, and the pixel size of GLC is 1 km2). It means that 
small (but sufficiently large for a species) habitat patches and transitions 
between the classes (i.e. ecotones providing a specific and valuable type 
of habitat) are overlooked in these datasets (Šímová et al. 2019; St-Louis 
et al. 2014). The thematic resolution, i.e., the character and number of 
classes distinguished in the classified map, represents another possible 
limitation. The definition of classes is typically guided by human 
perception of landscape, which may not reflect the true habitat re
quirements of species (Coops et Wulder, 2019; Gillespie et al., 2008; 
Zitske et al., 2011). For example, bird habitats are, among other factors, 
influenced by vegetation structure (Basile et al., 2021), which is not 
captured in the classified data - the overall configuration and the relative 
proportions of vegetation in the understorey, shrub layer, and canopy 
are crucial determinants affecting aspects such as nest predation, the 
quantity and availability of food resources, and microclimatic condi
tions. Consequently, these factors significantly contribute to the quality 
of nesting habitat and nest success (Bradley and Fleishman, 2008). In 
addition, the land cover classification accuracy is often low, around 
65–80% (Chen et al., 2015; Gómez et al., 2016; Gong et al., 2013). Thus, 
up to a third of all pixels in the land cover data can be misclassified. This 
inherently introduces errors into the models explaining and predicting 
biodiversity. Last but not least, due to the time-consuming classification 
process (which adds to its expense), classified remote sensing-based 
maps are typically available only for several time points, which limits 
analyses of landscape (and biodiversity) changes over time. Because of 
all these drawbacks, the reliability of biodiversity indicators derived 
from classified land cover maps can be questionable. 

Fortunately, there is an alternative to the use of classified land cover 
data: we can derive predictors of species distributions and diversity from 
unclassified multispectral remote-sensed data (Culbert et al., 2012; Duro 
et al., 2014; Farwell et al., 2020; Hunt et al., 2022; Sheeren et al., 2014) 
that do not suffer from the abovementioned limitations (Pettorelli et al., 
2014; Sheeren et al., 2014). These predictors, derived from reflectance 
values from individual bands or derived vegetation indices, offer in
sights into soil and vegetation moisture, biomass content, and vegeta
tion greenness due to the unique spectral responses of different surfaces. 
Vegetation indices are used for assessing vegetation cover through 
simple and effective algorithms, utilizing observations in two or more 
spectral bands (Bannari et al., 1995; Xue and Su, 2017). These unclas
sified data preserve the original information in each pixel, avoiding 
distortions caused by the exclusion of local characteristic (Gottschalk 
et al., 2005), subjective classification (St-Louis et al., 2014), and/or 

misclassification (Shao and Wu, 2008). Unclassified data thus represent 
an inexpensive way of consistent and regular acquisition of information 
on landscape structure over large areas (Foody and Cutler, 2003; Mul
davin et al., 2001; Rocchini et al., 2010). Therefore, there is a need for 
studies that compare the ability of unclassified multispectral satellite 
data and classified land cover maps to explain animal diversity (Culbert 
et al., 2012; Duro et al., 2014; Hunt et al., 2022 or Sheeren et al., 2014). 

Both classified and unclassified data can be used for characterizing 
landscape heterogeneity for the purposes of modeling species diversity 
(Tuanmu and Jetz, 2015). Landscape heterogeneity is the main factor 
when mapping species diversity – areas with higher structural and 
compositional differences in vegetation and terrain can host more spe
cies due to the higher number of available niches (Hortal and Lobo, 
2005; Stein et al., 2014). Analogously to the traditional heterogeneity 
metrics derived from classified land cover maps [e.g. Patch Richness and 
similar (Adler and Jedicke, 2022; Plexida et al., 2014; Schindler et al., 
2015; Schindler et al., 2013)], spectral heterogeneity can be calculated 
directly from unclassified multispectral data. The association of such 
’spectral heterogeneity’ or ’spectral variability’ with species diversity 
has been proposed in the Spectral Variation Hypothesis (SVH) (Palmer 
et al., 2000, 2002), which suggests that environmental heterogeneity 
correlates with spectral heterogeneity of unclassified remote-sensed 
multispectral imagery. 

SVH has been tested on several groups of organisms, including 
vascular plants (e.g., Foody and Cutler, 2003; Levin et al., 2007; Perrone 
et al., 2022; Rocchini et al., 2014; Rocchini et al., 2004; Rugani and 
Rocchini, 2017), mammals (Oeser et al., 2020), and birds (Bino et al., 
2008; Farwell et al., 2021; Hunt et al., 2022; Sheeren et al., 2014; St- 
Louis et al., 2014; Wood et al., 2013). A higher number of studies on 
vascular plants is available due to a more direct mechanistic link be
tween plant diversity and spectral heterogeneity (Ustin and Gamon, 
2010): the multispectral remote-sensed images contain direct informa
tion about plants and trees on the Earth’s surface, while where animals 
are concerned, the imagery describes only the spectral heterogeneity of 
their habitats. 

SVH-based biodiversity modeling, i.e., the use of unclassified spec
tral data for biodiversity modeling, has both advantages and limitations. 
The relationship between species diversity and spectral heterogeneity 
can depend on the landscape type (i.e. type of environment) (Perrone 
et al., 2022; Schmidtlein and Fassnacht, 2017), and SVH is, therefore, 
not valid universally across all landscape types. While Perrone et al. 
(2023) included the most prevalent land cover type in the analysis to 
account for various landscape types, Schmidtlein and Fassnacht (2017) 
employed a moving window approach to derive statistical links between 
spectral variability and species richness through space and time. At the 
same time, the relationship between diversity and spectral heterogene
ity is likely scale-dependent, because scale-dependence is a general 
feature of species-environment models (McGarigal et al., 2016; Moudrý 
et al., 2023a; Moudrý and Šímová, 2012). The plethora of indices of 
spectral heterogeneity (reviewed by Wang and Gamon, 2019) is another 
issue. Indices differ in their theoretical background, computational cost, 
and can thus vary in their ability to predict biodiversity. For example, 
parameterized Rao’s Q is a commonly used index of landscape hetero
geneity (Torresani et al., 2018; Rocchini et al., 2021a, 2021b, 2018); 
however, its calculation for large areas is computationally costly. We 
thus see an opportunity to use indices that are easy to calculate, such as 
the coefficient of variation or standard deviation. 

Here, we test if there is a relationship between bird species diversity 
and predictors of landscape structure and heterogeneity derived from (i) 
a standard classified land cover map (Corine) and (ii) unclassified 
multispectral satellite data (Landsat 8) at two spatial grains (131 km2 

and 8 km2) over the extent of the Czech Republic. In addition, we also 
test the influence of the original image resolution (pixel size) on that 
relationship. We aim to compare the ability of these two groups of 
predictors to explain species diversity at different spatial scales across 
various landscape types. We expect that the predictors based on 
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unclassified multispectral data will explain the bird species richness 
better, than those based on classified Corine data, particularly at the 
finer spatial grain, due to the coarse spatial resolution (minimum 
mapping unit of 0.25 km2) of Corine for such small sampling unit. We 
also hypothesize that bird communities may vary in their response to 
environmental predictors in different types of landscapes due to their 
diverse ecological requirements. 

2. Methods 

2.1. Study area 

The study area (approximately 69,000 km2) is in Central Europe, 
situated within the Czech Republic. It consists mainly of hills, plateaus, 
and lowlands surrounded by mountains along the borders. The altitude 
ranges between 115 and 1603 m above sea level. The landscape consists 
mainly of temperate forests, farmlands, inland waters, and urban areas. 
The climate is temperate, with a regular alternation of four seasons. 

2.2. Species data 

We used bird data from the Atlas of Breeding Birds in the Czech 
Republic 2014–2017 (Šťastný et al., 2021; hereinafter Atlas). The grid of 
the Atlas data consists of ‘large squares’ (10’ east longitude × 6’ north 
latitude; see Fig. 1), each of which is subdivided into 16 ‘small squares’ 
(Fig. 1). These grid sizes were used as the two grains of analysis evalu
ated in this study. 

The presence and absence of each bird species were mapped spe
cifically for the Atlas by hundreds of ornithologists (i) in all large squares 
and (ii) in randomly selected small squares (Fig. 3). At least one person 
undertook bird mapping in every large square; most of them were, 
however, mapped by several people. The ornithologists systematically 
and repeatedly searched for evidence of the breeding occurrence of each 
species in all habitats present in the particular large square. Following 
the standards used in Europe (Hagemeijer and Blair, 1997), they 
recorded occurrences in three categories defining the probability of 
breeding as ’A – possible breeding’, ’B – probable breeding’, and ’C – 
confirmed breeding’; the highest category found for a given square is 
recorded in the Atlas. Such broad-scale mapping was complemented by 
mapping in the grain of the randomly selected small squares, where the 
so-called ’one-hour survey’ was applied. In this type of survey, the 

volunteers recorded the first detection of each species, regardless of 
abundance, during six time slots lasting for 10 minutes each. 

We used the number of bird species (i.e., species richness, hereafter 
richness) as the index of diversity and as the main response variable in 
our models. To assess the influence of scale on the relationship between 
spectral heterogeneity and richness, we used both sizes of squares, large 
and small. As the species data in grid squares intersecting the country’s 
border can be inconsistent, we used only grid squares lying entirely in 
the Czech Republic. We used all breeding categories (A, B, C) for 
modeling (Moudrý et al., 2017). 

Although we originally had not expected significant sampling bias as 
the data are supposed to be systematically collected (see above and also 
Šťastný et al., 2021), we found a strong dependence between sampling 
effort and species richness (Fig. 2). Hence, we excluded the squares with 
fewer than 100 visits in the large squares (237 squares remaining) and 
those with fewer than 10 visits in the small squares (467 squares 
remaining) from our analysis (see Fig. 2 and 3). 

2.3. Classified predictors - land cover data 

Land cover information was obtained from the Corine Land Cover 
(CLC2018) database, referring to the land cover/land use status in 2018. 
We distinguished seven classes (Table 1). 

We used the classes described in Table 1 to calculate predictors of 
bird species richness (Fig. 4). Landscape composition was described by 
calculating the area of the individual classes within each square. To assess 
the landscape heterogeneity using land cover, we used three simple 
landscape metrics as recommended by ̌Símová et Gdulová (2012) due to 
their predictable behavior across spatial scales: (1) Patch richness (PR – 
number of unique classes of land cover in the sampling unit), (2) Number 
of patches (NP – number of CLC polygons in the sampling unit), and (3) 
Largest patch area (LP – the area of the largest polygon in the sampling 
unit). 

2.4. Unclassified predictors - multispectral data 

In addition to the classified Corine data, we used data from Landsat 
8, the satellite imagery was downloaded from the Earth Engine Catalog 
(USGS Landsat 8 Level 2, Collection 2, Tier 1) with spatial resolutions of 
30 and 100 m (with the aim of assessing the influence of the original 
image resolution on the resulting models), using rgee – an R package 

Figure 1. Czech Republic covered by the grid of the breeding bird Atlas: each large square (approx. 131 km2) is subdivided into 16 small squares (approx. 8 km2). 
The displayed land cover is obtained from the Corine database. 
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Figure 2. Relationship between species richness (number of species) and sampling effort (number of sampling days) in (A) large squares and (B) small squares. The 
Pearson correlation coefficients indicate a correlation of 0.60 (0.43 post-threshold) for large squares and 0.41 (0.35 post-threshold) for small squares. The blue line 
represents the trend estimated using the Loess smoothing method and the grey area represents its point wise 95% confidence bands. We considered in our analysis 
only the squares with more than (A) 100 or (B) 10 sampling days (black dashed lines) for large or small cells, respectively. The threshold was qualitatively selected by 
assessing the visual appearance of the scatterplot graphs. 

Figure 3. Spatial distribution of sampling effort. A: large squares, B: small squares. Colors indicate the number of sampling days. The dotted green squares represent 
those that were used in the models. The squares with the highest sampling effort match the locations of the largest cities within the Czech Republic. Empty spaces 
indicate areas that have not been mapped during preparation of the Bird Breeding Atlas of the Czech Republic 
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designed to interact with Google Earth Engine (Aybar et al., 2020). We 
restricted our analysis to image collections from 2014 to 2017, the same 
range as the Breeding Birds Monitoring data, calculated separately for 2 
months, April and July. By April we wanted to capture the beginning of 
the vegetation season, assuming that spectral heterogeneity is highly 
variable during this annual period. To represent the peak of the vege
tation season, characterized by full landscape coverage, we opted for 
July as a representative month. 

To prepare individual bands for analysis, we first eliminated pixels of 
low quality (e.g. clouds, shadows, or other invalid data), we filtered the 
collection according to the properties “QA_PIXEL”, “QA_RADSAT” and 
“SR_QA_AEROSOL” in Google Earth Engine (Gorelick et al., 2017). Due 
to the presence of clouds and division into multiple acquisition paths, it 
was not feasible to utilize a single image from a specific date to cover the 
entire Czech Republic. We, therefore, used cloudless data from all years 
to create specific monthly composites for April and July. To address the 
issue of missing data in some pixels, we computed the percentage rep
resentation of valid pixels (those that were not removed during the 
collection filtering) for each square and removed squares containing less 
than 50% quality pixels, resulting in the removal of 11 large squares and 
48 small squares (thus, a total of 226 large and 419 small squares 

remained, constituting the basis for all subsequent analyses in the 
study). 

In addition to reflectances, vegetation indices were also employed as 
they were repeatedly shown to explain a significant portion of biodi
versity (Hall et al., 2010; Levin et al., 2007; Oindo et al. 2000, Rocchini 
et al., 2014). Given the strong correlation observed among individual 
bands and vegetation indices, we have identified four essential variables 
for our analyses. These variables were selected for their lower mutual 
correlation and considered as potentially influential variables for our 
study (Table 2, Fig. A1 in the Appendix). 

From individual bands and vegetation indices, three indicators of 
spectral heterogeneity were calculated from all pixels within each 
sampling unit (i.e., individually for each large and small square) (Fig. 4): 
(1) coefficient of variation (CV) (Gholizadeh et al., 2018; Levin et al., 
2007; Mpakairi et al., 2022; Torresani et al., 2019), (2) standard devia
tion (StDev) (Warren et al., 2014), and (3) Rao’s Q index (Rocchini et al., 
2017; Torresani et al., 2019) (Table A1 in the Appendix). Rao’s Q index 
is a recently proposed measure of spectral heterogeneity that can be 
applied to remote-sensed data (Rocchini et al., 2021a). It measures the 
distance between pixel values in spectral space, as well as their even
ness. As a result, the higher diversity is related to the relative distance of 
spectral values and the evenness of their distribution. We used the ras
terdiv R package to perform these computations (Rocchini et al., 2021b). 
The moving window size was set to equal the size of the squares. Un
fortunately, due to the high computational cost, we were not able to 
compute the Raós Q index for images based on a 30 m resolution. 

Additionally, we computed the median values of individual bands 
and vegetation indices for each square to compare them with the spec
tral heterogeneity metrics and to incorporate the information about 
landscape composition into our models. Based on these steps, we ob
tained 8 predictors for each of the metrics ((2 bands + 2 vegetation 
indices) * 2 months) for further analysis (see Fig. 4, Table A1). Their 
correlation structure as well as correlation with the response variable 
are shown in Figs. A7-9 in the Appendix. 

2.5. Landscape types 

To evaluate the effectiveness of predicting bird species richness with 
unclassified remote sensed data across the entire area of the Czech Re
public with various types of landscape, we decided to incorporate in
formation about the landscape type in our models. The characterization 
of the landscape type was based on the predominant Corine land cover 
class (Table 1) observed within each square. This approach was inspired 
by the findings by Perrone et al. (2023) or Schmidtlein et Fassnacht 

Table 1 
Corine classes used in our study and their description.  

Corine class Codes Description Abbreviation 

Artificial surfaces 1 Urban fabric; Industrial, 
commercial and transport units; 
Mine, dump and construction sites; 
Artificial, non-agricultural 
vegetated areas 

Urban 

Coniferous forests 3.1.2 Coniferous forests Coniferous 
Broad-leaf and 

mixed forests 
3.1.1; 
3.1.3 

Mixed forest; Broad-leaved forest Leaves and 
mixed 

Open vegetation 3.2, 
3.3 

Scrub and/or herbaceous 
vegetationassociations; Open 
spaces with little or no vegetation 

Open 
vegetation 

Arable land and 
permanent crops 

2.1; 
2.2 

Arable land; Permanent crops Agro 

Pastures and 
heterogenous 
agricultural 
areas 

2.3; 
2.4 

Pastures; Land principally 
occupied by agriculture, 
withsignificant areas of natural 
vegetation; Annual crops 
associated with permanent crops; 
Complex cultivation patterns; 
Agro-forestry areas 

Natural agro 

Wetlands and 
water bodies 

4; 5 Inland wetlands; Inland waters Water  

Figure 4. The schematic procedure of the acquisition of the variables utilized in our analyses. The diagram illustrates the process from raw input data through 
variable selection to the final predictors and response calculated for both small and large squares. 
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(2017), who concluded that SVH does not apply uniformly across 
different landscapes. The individual square classification into a partic
ular landscape type was treated as a categorical variable in subsequent 
analyses with unclassified remote-sensed data. Because urban areas are 
known to play a significant role in influencing species distributions, and 
since there was only a single large square in which this landcover type 
was predominant, we made the decision to categorize an area as ’urban’ 
even when it served as the second predominant land cover type. This 
choice was made to ensure that valuable information regarding urban 
areas is not lost in our models. 

2.6. Statistical analysis 

All statistical analyses were performed using R version 4.2.1 (R Core 
Team, 2021). We fitted generalized linear models (GLMs) for both large 
and small squares. GLMs are appropriate for count data such as species 
richness (studied here) and can be fitted with the appropriate error 
distribution and link function (e.g., Poisson or negative binomial) 

(Lopatin et al., 2016). We fitted GLMs using several predictor sets, log 
link function, and assuming a Poisson data distribution. After fitting the 
models, we checked for overdispersion. While for the large squares, the 
models were not overdispersed (the mean ± SD dispersion parameter 
was 1.06 ± 0.08), the models on the small squares did suffer from the 
overdispersion (the mean ± SD dispersion parameter was 3.71 ± 0.11). 
Therefore, we used the negative-binomial models for the small squares. 

Initially, we fitted 4 foundational models. In the first model, we 
tested the performance of classified data, i.e., Corine classes and land
scape metrics. Subsequently, we generated three models based on un
classified data by combining median values of individual bands and 
vegetation indices and one of the spectral heterogeneity metrics. In 
addition, we included sampling effort as a covariate in all four models. 
To mitigate multicollinearity, we computed the variance inflation factor 
(VIF) for each group of predictors that entered these models. We utilized 
the vifcor() function (Naimi, 2017) to exclude highly correlated vari
ables (correlation threshold set at 0.7) through a stepwise procedure. To 
eliminate non-significant predictors, backward stepwise selection (the 
Stats package (R Core Team, 2021)) was applied to all 4 models (Fig. 5). 
The procedure was based on the Akaike information criterion (AIC; 
Akaike, 1974). 

A similar procedure was used to investigate the relationship between 
spectral heterogeneity and bird diversity across various landscape types. 
In the 3 full “spectral heterogeneity” models, we let all variables interact 
with the landscape type. The subsequent steps followed the same 
approach, employing stepwise selection. 

2.7. Deviance partitioning 

In order to assess the importance of individual groups of predictors, 
as opposed to the importance of individual predictors, we conducted 
deviance partitioning (Carrete et al., 2007; Peres-Neto et al., 2006). 
Specifically, for models testing unclassified data, we partitioned residual 
deviance (of species richness) from a null model (GLM, see above) with 
no predictors to (1) a fraction explained by the “spectral heterogeneity” 
predictors, (2) fraction explained by the median predictors as well as (3) 
by the sampling effort, (4) their overlap, and (5) a fraction explained by 
their independent effect. For models testing classified data, we followed 
the same procedure for (1) Corine class data, (2) landscape metrics, (3) 
sampling effort, (4) their overlap, and (5) a fraction explained by their 

Table 2 
A table of raw bands and vegetation indices, considered as potentially influential 
for explaining bird species richness, that were used for calculating predictors in 
our models.  

Code Band Wavelength 
(micrometers) 

Rationale for including the 
variable 

B3 Green 0.53-0.59 Play an important role in 
monitoring water and 
vegetation information. 

B5 Near Infrared 
(NIR) 

0.85-0.88 Sensitive to structural 
characteristics of vegetation, 
providing information about 
canopy structure and overall 
plant health. 

Code Vegetation index Formula  
NDVI Normalized 

Difference 
Vegetation Index 

NDVI = (NIR – 
Red) / (NIR +
Red) 

Associated with the health 
and density of vegetation. 

MNDWI Modified 
Normalized 
Difference Water 
Index 

(Green – SWIR) / 
(Green + SWIR) 

Designed to enhance open 
water features. It also 
diminishes built-up area 
features that are often 
correlated with open water 
in other indices.  

Figure 5. Workflow of our statistical analyses. Three predictor groups were formulated for unclassified data based on spectral heterogeneity metrics and one group 
for Corine data. All procedures were done for both large and small squares. We fitted 2 models within each group of predictors: a foundational model and a model 
incorporating landscape type in interactions. This methodology was replicated for predictor groups CV and StDev, extending the analyses to include predictors 
derived from raster data at a 30 m resolution. 
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independent effect. This method attempts to partition or resolve the 
explanatory power of different explanatory matrices in relation to the 
same response matrix (Borcard et al., 1992) and is especially useful 
when there is some collinearity in the predictors, or when complex 
hypotheses need to be tested that involve whole sets of predictors. 

Our objective was also to partition explanatory power between 
classified and unclassified predictors. We constructed an additional 
model combining classified and unclassified predictors from the best- 
performing models (Corine and StDev models in 100 m res.) . It is 
important to note that in this model, we didńt focus on explaining the 
variability in species richness, nor did we address issues related to data 
collinearity. Rather, the primary aim was to construct a model that 
effectively illustrates the partitioning dynamics between these distinct 
categories of predictors. 

2.8. Spatial autocorrelation 

To address the potential presence of spatial autocorrelation effects in 
our study, we utilized Moran’s correlogram to measure autocorrelation 
in species richness. We examined data from both small and large squares 
and observed that autocorrelation was minimal in small squares (max. 
Moran’s I: 0.07), while a weak autocorrelation was observed in the large 
squares (max. Moran’s I: 0.20). To address this, we conducted an anal
ysis of residuals from our models, which further supported the absence 

of substantial autocorrelation effects in our research outcomes (max. 
Moran’s I: 0.06 for small squares and max. Moran’s I: 0.09 for large 
squares) (Figs. A2 and A3 in the Appendix). 

3. Results 

3.1. Scale 

We considered scale in two ways, namely 1) the original image reso
lution (pixel size) and 2) grain (sampling unit). In terms of AIC, the models 
based on 30 m resolution slightly outperformed the ones based on 100 m 
resolution in case of large squares. The reduction of AIC was about 3 and 
9 points for models with and without interactions with landscape types, 
respectively (Fig. 6). For small squares, the AIC values were more stable, 
not favoring any of the two resolutions. The average variability in bird 
species richness explained by all models was similar when comparing a 
100 m to a 30 m resolution (Fig. 6). In models without interactions with 
landscape type, the average explained deviance for large squares was 
48% and 51% for models based on a 100 m and 30 m resolution, 
respectively. For small squares, these values were 21% and 23% for a 
100 m and 30 m resolution, respectively. In models with interactions, 
the average explained deviances for large squares were 54% and 58% for 
the 100 m and 30 m resolutions, respectively while for small squares, it 
was 26% for both resolutions. 

Figure 6. Explained deviance (upper panels) and AIC values (lower panels) for the final GLMs fitted on data from large and small squares. Apart from the overall 
explained deviance values (pink and green columns in the upper panels), the explained deviance reduced by the part explained solely by sampling effort is shown 
(grey columns in the upper panels). 
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The differences between the results from the two grains were more 
pronounced. The overall average explained deviance was 52% (SD: 4.5) 
for large squares and 23% (SD: 3.1) for small squares, respectively. Due 
to the significantly weaker results for small squares and little differences 
between the models in terms of the original raster resolution, subsequent 
results from our study (emphasizing the predictors effects, deviance 
partitioning etc.) will be mostly presented for models based on large 
squares at a 100 m resolution raster. The coefficients of all the models 
are summarized in the Tables A2-10 in the Appendix. The explained 
deviance and AIC values are shown in Fig. 6. The observed vs predicted 
plots are in the Figs. A4 and A5 in the Appendix. 

3.2. Models using classified predictors 

Models fitted with Corine predictors captured 45% of the bird species 
richness variability in large squares and 21% in small squares. Despite 
the substantial explained variability in large squares, the AIC was high 
compared to other models (Fig. 6). After the exclusion of the part 
explained by sampling effort only, the explained variability decreased to 
28% and 13 % for large and small squares, respectively (the grey col
umns in Fig. 6). Furthermore, the model with unclassified predictors 
also showed a notable bias, overestimating the species richness in most 

of the squares (Figs. A4 and A5 in the Appendix). There is a small overlap 
among variability explained by all groups of predictors (Fig. 7). 

In the models based on Corine predictors on large squares, the largest 
effect on species richness was exhibited by the extent of urban areas (-47 
species over the predictor range), sampling effort (+44 species over the 
predictor range) and the area of water (+35 species over the predictor 
range) (Table A2, Fig. A9 in the Appendix). The effects of other pre
dictors were considerably weaker (Fig. A9). 

3.3. Models using unclassified predictors 

Models with unclassified predictors were able to explain up to 51% of 
the variability in bird species richness in large squares, and up to 23% in 
small squares (Fig. 6), a part of which, however, could be explained by 
the sampling effort. After deduction of the variability explained solely 
by the sampling effort, we obtained the net variability explained by 
unclassified predictors, which was 33 % and 15 % for large and small 
squares, respectively. The coefficient of variation (CV) and standard 
deviation (StDev) yielded equivalent results, while Rao’s Q index 
exhibited a slightly inferior performance in terms of explained deviance 
and markedly higher AIC value (Fig. 6). For both large and small 
squares, spectral heterogeneity metrics were the most powerful 

Figure 7. Deviance partitioning for models based on unclassified data in large squares at a 100 m resolution (A - C) and on classified data in large squares (D). In the 
models based on unclassified data, the spectral heterogeneity was measured by Rao’s Q (A), coefficient of variation (B), and standard deviation (C). Each color 
represents one group of predictors used in the model. The overlap of the bubbles indicates shared variability explained by a given combination of predictors. The 
remaining unexplained variability is also specified. 

D. Prajzlerová et al.                                                                                                                                                                                                                            



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103763

9

predictors. The overlap between spectral heterogeneity and median 
predictors is consistently small in all models. Besides, there is no overlap 
between median values and sampling effort. Additionally, some of the 
variability explained by spectral heterogeneity is shared with the vari
ability explained by sampling effort (Fig. 7). 

All three models for large squares that were based on unclassified 
predictors yielded almost the same significant predictors; these simi
larities were especially obvious between the models with CV and StDev 
heteronegeity metrics (Tabs. A3, A5 in the Appendix). From the het
erogeneity predictors, the April MNDWI was the most important pre
dictor, showing an increase of 45 species over its range for the model 
with StDev (Fig. A10 in the Appendix). The median of the green band 
reflectance exhibited an even stronger effect (+52 species), with sam
pling effort also showing a strong effect (+33 sp.; see Fig. A10 for all 
effects). 

3.4. Models using unclassified predictors interacting with landscape types 

When including the information about the environment (landscape 
type), our models showed a reduction in AIC by up to 10 points, and they 
explained an even greater portion of variability – up to 57% in large 
squares and up to 27% in small squares, respectively (up to 40% and 
20% after the exclusion of sampling efforts) (Fig. 6). 

The selection of significant predictors not interacting with landscape 
types as well as their effects were almost identical as for the models 
without interactions (compare Tables A3, A5 with the Tables A4, A6, 
and Fig. A10 with Fig. A11 in the Appendix). For the models based on 
the StDev heterogeneity metric, the heterogeneity of the April NIR band 
represented the only significant interaction with landscape types. The 
effect of this interaction was positive in the areas dominated by agri
culture or coniferous forests, while it was negative in the leaved-and- 
mixed forests and urban areas (Fig. A11). 

3.5. Comparison of classified vs unclassified predictors 

The model combining predictors based on classified and unclassified 
remote-sensed data (StDev and median values) explained 54% of the 
variability in species richness; nevertheless, a large fraction of explained 
variability cannot be attributed to any individual group of predictors 
(Fig. 8). The spectral heterogeneity predictors explained the largest 
portion of variability; still, although the results are better than those 
yielded by models based on Corine predictors the performance of the 
latter was slightly inferior. 

4. Discussion 

In our study, we have demonstrated that models based on unclassi
fied remote-sensed data, particularly metrics representing spectral het
erogeneity, can explain the variability in bird species richness better 
compared to models and metrics based on classified land cover data. As 
classified remote-sensed data are only available from certain regions, 
the possibility of using unclassified data that are more widely available 
is good news for researchers focusing on such areas. Nevertheless, the 
model combining all types of data showed that the shared explained 
variability was substantial, indicating that both types of data contain 
similar information about the environment. 

Putting aside the question of scale/spatial extent, our findings can be 
compared with those published by Duro et al. (2014) or Ribeiro et al. 
(2019), who found that predictors derived from continuous information 
(NDVI) were consistently better predictors of species diversity than 
predictors derived from discrete classifications. In contrast, Culbert et al. 
(2012) found that bird species diversity in Midwestern USA was slightly 
better explained by landscape composition metrics based on land cover 
classification than by predictors based on continuous spectral informa
tion (image texture); however, they also state that the satellite images 
used in this study were not acquired at the same phenological stage, 

which may have likely introduced extraneous variability into texture 
measurements. The amount of variability in species richness explained 
by our models is comparable to other similar studies based on Landsat 
imagery (Culbert et al., 2012; Duro et al., 2014; Hunt et al., 2022; Levin 
et al., 2007; Rocchini, 2007; Wood et al., 2013). 

We had expected that effects of environmental predictors would be 
influenced by the type of landscape in which the analysis was done. 
Many studies were conducted over small geographical extents or typi
cally focused on a single habitat type (Bino et al., 2008; Duro et al., 
2014; Goetz et al., 2010; St-Louis et al., 2014; Wood et al., 2013). 
Compared to these, we included a variable that characterizes various 
landscape types, and let it statistically interact with other predictors in 
the models. Surely enough, including the interaction explained more 
variation in our models and led to a reduction in AIC. This is consistent 
with Perrone et al. (2023) or Schmidtlein et Fassnacht (2017) who 
concluded that SVH does not hold uniformly across different landscape 
types. Ludwig et al. (2024) also emphasized that the applicability of SVH 
is not universal; it varies not only across ecosystems but also across 
seasons and sensors. 

We showed that spectral heterogeneity can explain a significant 
portion of the variability in bird species richness; this link also depended 
on specific metrics characterizing spectral heterogeneity. We compared 
three metrics of spectral heterogeneity: the coefficient of variation (CV), 
standard deviation (StDev), and Rao’s Q index. The CV and StDev 

Figure 8. Deviance partitioning for the model combining unclassified data, 
classified data, and sampling effort as predictors. The unclassified predictors are 
those from the best performing model with unclassified data, i.e. the model for 
large squares based on 100 m resolution rasters using standard deviation as a 
metric of spectral heterogenenity. The Corine predictors are based on the model 
with Corine predictors for large squares. Each color represents one group of 
predictors used in the model. The overlap of the bubbles indicates the shared 
variability explained by a given combination of predictors. The remaining un
explained variability is also specified. 
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metrics were almost identical, both in terms of model fit and predictor 
effects. A single predictor – the heterogeneity of April MNDWI – played a 
major role in explaining the species richness in these models. Models 
using Rao’s Q predictors differed in terms of predictor selection and also 
exhibited weaker performance. The long computation time and the 
inability to calculate it at a 30-meter resolution were additional limi
tations of Rao’s Q. Based on other studies (Bino et al., 2008; Sheeren 
et al., 2014; St-Louis et al., 2014), we expected that higher species 
richness would be associated with sites showing higher spectral het
erogeneity; however, the effect of spectral heterogeneity was sometimes 
negative, especially in interactions with certain landscape types. We, 
therefore, suggest that the direction of correlation (positive or negative) 
between species richness and spectral heterogeneity is likely to be 
influenced by the type of landscape. 

Besides the indices of spectral heterogeneity and type of landscape, 
scale is another important factor (Moudrý et al., 2023a). In our study, we 
considered two types of scale: we compared (a) predictors derived from 
images with 30 m and 100 m resolutions (pixel sizes), as well as (b) two 
different sizes of mapping units (grain). Rocchini (2007) claimed that a 
decrease in resolution (pixel size) would decrease the predictive ability 
of spectral heterogeneity because of more mixed reflectance within a 
pixel. However, we observed almost no improvement in models based 
on images with 30 m resolution. According to our results, the size of the 
mapping unit (large and small squares, in our case) plays a more 
important role in explaining species diversity than the original resolu
tion of the imagery (see Fig. 6). 

Based on other studies (Betts et al., 2007; Culbert et al., 2012; St- 
Louis et al., 2014), we expected models using unclassified data for 
small squares to perform better than those for the large squares. Sur
prisingly, this was not the case, and the amount of explained variability 
in species richness was lower in the small squares than in the large ones. 
This observed poor relationship between species richness and spectral 
heterogeneity in small squares may be explained by the fact that small 
squares are more prone to containing only a single landscape type 
(Fig. 9) such as surface mines, city centers, and mountains. These have 
high spectral heterogeneity but low bird diversity, and, therefore, SVH 
fails in squares dominated by these landscape types. In contrast, large 
squares contain more landscape types, including species-rich types such 
as forests, and, thus, the spectral heterogeneity within these squares is 
more biologically relevant. An additional explanation is ecological: the 

finer the resolution, the higher is the chance of stochastic and neutral 
processes driving community assembly and diversity (Leibold and 
Chase, 2017) to compromise the SVH validity. The demographic sto
chasticity (Lande et al. 2010), which emerges from random variation in 
fecundity and mortality at an individual level at local scales and which 
can lead to local extinctions, can be used as an example. Stochastic 
source-sink metapopulation dynamics (Hanski 2001) can be used as 
another example – it is detectable as a fluctuating occupancy at fine 
grains, but as stable occupancy at coarse grains. Both these examples can 
lead to the weakening of the deterministic species-environment corre
lations towards local grains. Inversely, the coarser the resolution, the 
stronger the effect of environmental deterministic processes on di
versity, which is a pattern with strong empirical support across other 
taxonomic groups and regions (Field et al., 2009). 

Additionally, in Corine models, we also noted a lower performance 
for small squares. We hypothesize that this may be attributed to the 
spatial scale of Corine data, which has a minimum mapping unit of 0.25 
km2. This coarse spatial resolution could be inadequate when applied to 
the scale of small squares. 

We are aware that our study comes with limitations. Although we 
used data from systematic sampling, these data exhibit some biases 
typical of citizen science. Several factors have been described as strongly 
influencing the sampling effort, such as the presence of roads, water 
bodies, and urban areas (Engemann et al., 2015; Zizka et al., 2021). 
When comparing models for classified and unclassified data, distinct 
patterns emerge regarding the influence of sampling effort. In models 
utilizing Corine data, the shared deviance explained between Corine 
predictors and sampling effort is minimal. Conversely, in models with 
unclassified data, there is an observable shared explained deviance be
tween spectral heterogeneity and sampling effort. This observation 
suggests that there is also a relationship between the sampling effort and 
environmental heterogeneity, suggesting preferences of people to visit 
more heterogeneous landscapes. 

5. Conclusion 

We have demonstrated that unclassified remote-sensed data from 
Landsat 8 can explain a similar or greater amount of spatial variability of 
bird species richness than predictors derived from classified land cover 
data such as Corine. We showed that spectral heterogeneity is a good 

Figure 9. Examples of small squares filled with mostly one type of environment, but with high spectral heterogeneity (A: city center, B: water body, C: surface mine); 
Another example: large squares with high spectral variability and also high species richness, D: orthophoto map, E: Corine land cover classes, F: May NDVI. 
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predictor of bird species richness, but we do not provide ultimate sup
port for the SVH – whether the relationship between spectral hetero
geneity and species richness is positive or negative depends on the 
landscape type. We found that the size of the mapping unit plays a more 
important role in explaining species diversity than the original resolu
tion of the imagery. The use of unclassified remote-sensed data as a 
straightforward and efficient predictor of bird diversity holds potential. 
This approach can enhance our understanding of the environmental 
associations with higher species diversity and inform decision-making 
authorities concerning biodiversity conservation. 
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Gómez, C., White, J.C., Wulder, M.A., 2016. Optical remotely sensed time series data for 
land cover classification: A review. ISPRS Journal of Photogrammetry and Remote 
Sensing. https://doi.org/10.1016/j.isprsjprs.2016.03.008. 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., 
Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., 
Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., 
Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., 
Clinton, N., Zhu, Z., Chen, J., Chen, Jun 2013. Finer resolution observation and 
monitoring of global land cover: First mapping results with Landsat TM and ETM+

data. Int J Remote Sens 34. https://doi.org/10.1080/01431161.2012.748992. 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens 
Environ 202. https://doi.org/10.1016/j.rse.2017.06.031. 

Gottschalk, T.K., Huettmann, F., Ehlers, M., 2005. Thirty years of analysing and 
modelling avian habitat relationships using satellite imagery data: A review. Int J 
Remote Sens. https://doi.org/10.1080/01431160512331338041. 
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D. Prajzlerová et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S1569-8432(24)00117-1/h0145
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0145
https://doi.org/10.1111/j.1654-109X.2009.01063.x
https://doi.org/10.1111/j.1654-109X.2009.01063.x
https://doi.org/10.1007/s001140100246
https://doi.org/10.1002/rse2.7
https://doi.org/10.1002/rse2.7
https://doi.org/10.1007/s10531-004-0224-z
https://doi.org/10.1002/rse2.322
https://doi.org/10.1093/acprof:oso/9780198525257.001.0001
https://doi.org/10.1016/j.ecolind.2016.06.022
https://doi.org/10.1016/j.ecolind.2016.06.022
https://doi.org/10.2307/j.ctt1wf4d24
https://doi.org/10.1111/j.1472-4642.2007.00372.x
https://doi.org/10.1016/j.jag.2006.08.002
https://doi.org/10.1890/0012-9615(2002)072[0001:EOFFOB]2.0.CO;2
https://doi.org/10.1890/0012-9615(2002)072[0001:EOFFOB]2.0.CO;2
https://doi.org/10.1016/j.rse.2015.11.029
https://doi.org/10.1016/j.rse.2023.113988
https://doi.org/10.1016/j.rse.2023.113988
https://doi.org/10.1016/j.isprsjprs.2017.06.001
https://doi.org/10.1007/s10980-016-0374-x
https://doi.org/10.1007/s10980-016-0374-x
https://doi.org/10.1038/s41598-017-04794-3
https://doi.org/10.1038/s41598-017-04794-3
https://doi.org/10.1016/j.ecolind.2018.03.011
https://doi.org/10.1016/j.ecolind.2018.03.011
https://doi.org/10.1080/13658816.2012.721553
https://doi.org/10.1016/j.ecolind.2016.11.006
https://doi.org/10.1016/j.ecolind.2016.11.006
https://doi.org/10.1111/ddi.13644
https://doi.org/10.1111/ddi.13644
https://doi.org/10.1177/03091333231156362
https://doi.org/10.1016/j.ecoinf.2022.101667
https://doi.org/10.1046/j.1523-1739.2001.015004844.x
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0265
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0265
https://doi.org/10.1002/rse2.122
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0275
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0275
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0275
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
http://refhub.elsevier.com/S1569-8432(24)00117-1/h0285
https://doi.org/10.1186/s13717-021-00304-6
https://doi.org/10.1186/s13717-021-00304-6
https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
https://doi.org/10.1016/j.rse.2023.113591
https://doi.org/10.1111/1365-2664.12261
https://doi.org/10.1016/j.jag.2013.05.001
https://doi.org/10.1038/s41598-019-43330-3
https://doi.org/10.1038/s41598-019-43330-3
https://doi.org/10.1016/j.rse.2007.03.018
https://doi.org/10.1016/j.rse.2007.03.018
https://doi.org/10.1016/j.actao.2004.03.008
https://doi.org/10.1016/j.actao.2004.03.008
https://doi.org/10.1016/j.ecoinf.2010.06.001
https://doi.org/10.1016/j.ecoinf.2010.06.001
https://doi.org/10.1556/ComEc.15.2014.1.4
https://doi.org/10.1556/ComEc.15.2014.1.4
https://doi.org/10.1111/2041-210X.12941
https://doi.org/10.1111/2041-210X.12941
https://doi.org/10.1111/geb.13270
https://doi.org/10.1111/2041-210X.13583
https://doi.org/10.1111/2041-210X.13583
https://doi.org/10.1111/j.1365-2664.2007.01435.x
https://doi.org/10.1111/j.1365-2664.2007.01435.x
https://doi.org/10.1016/j.jclepro.2016.09.018
https://doi.org/10.1016/j.jclepro.2016.09.018
https://doi.org/10.1016/j.ecolind.2012.04.012


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103763

13

Schindler, S., von Wehrden, H., Poirazidis, K., Hochachka, W.M., Wrbka, T., Kati, V., 
2015. Performance of methods to select landscape metrics for modelling species 
richness. Ecol Modell 295. https://doi.org/10.1016/j.ecolmodel.2014.05.012. 

Schmidtlein, S., Fassnacht, F.E., 2017. The spectral variability hypothesis does not hold 
across landscapes. Remote Sens Environ 192. https://doi.org/10.1016/j. 
rse.2017.01.036. 

Shao, G., Wu, J., 2008. On the accuracy of landscape pattern analysis using remote 
sensing data. Landsc Ecol. https://doi.org/10.1007/s10980-008-9215-x. 

Sheeren, D., Bonthoux, S., Balent, G., 2014. Modeling bird communities using 
unclassified remote sensing imagery: Effects of the spatial resolution and data 
period. Ecol Indic 43. https://doi.org/10.1016/j.ecolind.2014.02.023. 
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