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Abstract. Interspecific spatial associations (ISA), which include co-occurrences, segre-
gations, or attractions among two or more species, can provide important insights into the
spatial structuring of communities. However, ISA has primarily been examined in the con-
text of understanding interspecific interactions, while other aspects of ISA, including its
relations to other biodiversity facets and how it changes in the face of anthropogenic pres-
sures, have been largely neglected. This is likely because it is unclear what makes ISA useful
in a biodiversity context, little is known about the theoretical connections between ISA and
other biodiversity facets, and there is a confusing variety of approaches to measuring ISA.
Here, we first review the metrics of ISA. These include spatially implicit and explicit indices
of association for binary, abundance, and point pattern data. We test and compare these
approaches on empirical and simulated data, and we provide recommendations for how to
use and interpret them in biodiversity science. We argue that measurements of ISA are
more informative when they are spatially explicit (i.e., distance dependent). We then review
links of ISA to other classical biodiversity facets, such as alpha, beta, and gamma diversity,
and show that they mostly fail to reflect changes/variation in ISA, with the exception of
average pairwise beta diversity. This underscores the need for a specific focus on ISA in
large-scale biodiversity assessments. Finally, we argue that there are important, and under-
appreciated, reasons to study ISA that are unrelated to its link to biotic interactions.
Specifically, ISA can provide strong tests of biodiversity theories that require multiple pat-
terns to benchmark against, and it can be explored for potentially predictive macroecologi-
cal patterns.

Key words: conspecific; co-occurrence; C-score; geostatistics; grain; heterospecific; interspecific;
intraspecific; point process; semivariogram; spatial scale.

. . . there is no absolutely general measure of the
degree of dependence. (Cramér 1924, quoted by
Goodman and Kruskal 1979, quoted by Hubálek
1982)

INTRODUCTION

Organisms are rarely distributed independently on
each other in space. Instead, individuals within a single
species may display non-random conspecific spatial aggre-
gation (CSA, Fig. 1, Appendix S1) in which they clump
together or spread apart. Additionally, individuals
between species may be spatially segregated or display
spatial attraction indicative of non-random interspecific
spatial association (ISA, Fig. 1, Appendix S1). CSA has
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known links to fundamental biodiversity concepts such as
species accumulation curves, species–area species–area
relationships, and beta diversity (Table 1; Storch et al.
2008, McGlinn et al. 2019); in contrast, the connections
between ISA and these concepts are less known and scat-
tered across the literature. Further, CSA and ISA are each
generated by distinct mechanisms: CSA emerges due to
conspecific interactions, the interplay between niche
width and environment, and species-specific dispersal lim-
its. In contrast, ISA is a result of interspecific interactions,
and the overlap of niches or dispersal limits among spe-
cies (Table 1). There is a long tradition of inferring these
mechanisms from spatial patterns of both CSA (Tilman
and Kareiva 1997, Condit et al. 2000) and ISA (Forbes
1907, Cody and Diamond 1979, Gotelli et al. 2010, Cala-
tayud et al. 2020). However, it is not always possible, nor
useful, to infer causal mechanisms from emergent static
patterns (Peters 1991, McGill and Nekola 2010, Blanchet
et al. 2020).
Fortunately, documenting static patterns of spatial

aggregation and association has value regardless of the
generative mechanisms, such as in macroecological stud-
ies (Currie 2019) and for nature conservation and fore-
casts (Ladle and Whittaker 2011). For example, patterns
of CSA underpin widely applied concepts such as species
endemism, range size, rarity, and ultimately extinction
risk (Hartley and Kunin 2003). Similarly, patterns of
ISA have direct applications in classifications of commu-
nities to coenoses or biomes (Hoekstra et al. 2004),

underpin the concepts of indicator and umbrella species
(Roberge and Angelstam 2004), and can improve esti-
mates of site-specific species pools (Carmona and Pärtel
2021) and predictions of species distributions (Harris
2016, Norberg et al. 2019). Further, even though it has
not been perceived as such, ISA describes a unique facet
of biodiversity, particularly when biodiversity is defined
as “variation of life at all levels of biological organiza-
tion” (Gaston and Spicer 2009). Even though biodiver-
sity is typically measured “per site,” it can also be
quantified in other ways, such as “per species” (e.g., a
number of species associated with a given species; Dor-
mann et al. 2009). However, the theoretical and empiri-
cal connections between “per species” associations and
spatial patterns of “per site” biodiversity remain poorly
understood.
Although ISA is implicit in spatial gradients of biodi-

versity (Table 1), only a handful of studies have
attempted to document large-scale patterns of ISA
empirically and explicitly (Gotelli et al. 2010, Lyons
et al. 2016, Tóth et al. 2019, Calatayud et al. 2020), and
ISA has been missing in recent high-profile studies of
the ongoing biodiversity change (Millenium Ecosystem
Assessment 2005, WWF International 2012, Newbold
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FIG. 1. The difference between conspecific spatial aggrega-
tion (CSA, vertical gradient) and interspecific spatial associa-
tion (ISA, horizontal gradient). While CSA is the dependence
(negative or positive) in spatial positions of individual within a
species, ISA is the dependence (negative or positive) of spatial
position of individuals of one species on spatial position of indi-
viduals of the other species. ISA is the subject of this paper.
Points are individuals, colors mark species.

TABLE 1. Brief summary of processes that generate CSA and
ISA, examples of biodiversity patterns that are linked to CSA
and ISA, and the approaches to measure them.

Question
Conspecific spatial
aggregation (CSA)

Interspecific spatial
association (ISA)

What
generates it?

species-specific
dispersal limits,
conspecific
interactions among
individuals, interplay
between niche
width, and spatial
aggregation of
environmental
conditions

dispersal limits
common to two
or more species,
interspecific
interactions among
individuals,
interplay between
niche overlap, and
aggregation of
environmental
conditions

Examples of
biodiversity
facets and
patterns
sensitive to it

beta diversity and its
distance decay,
species–accumulation
curves, species–area
relationships (Storch
et al., 2008, McGlinn
et al. 2019)

spatial gradients
of species richness,
assembly patterns
(e.g., nestedness,
Lewinsohn et al.
2006, Presley
et al. 2010)

Approaches
to measure it

spatial over- or
underdispersion using
Poisson or Negative
Binomial distribution
(He and Legendre
2002), spatial
Taylor’s law
(Taylor 1961),
occupancy–area
relationship (OAR),
and fractal dimension
(Kunin 1998),
univariate pair
correlation function
(Wiegand and
Moloney 2014)

this paper

Article e01452; page 2 PETR KEIL ETAL. Ecological Monographs
Vol. 91, No. 3

R
E
V
IE
W



et al. 2015, Blowes et al. 2019, IPBES 2019). To investi-
gate this potential knowledge gap more systematically,
we conducted two literature searches (Appendix S2).
First, we scanned Clarivate Web of Science for all papers
mentioning biodiversity in their title or abstract; among
these, we looked at frequency of terms associated with
ISA and terms associated with other ecological patterns
and processes (Appendix S2). We found that this litera-
ture has most often focused on quantities at sites (e.g.,
species richness, functional and phylogenetic diversity),
or variation among sites (e.g., beta diversity). In con-
trast, biodiversity-related papers paid considerably less
attention to ISA, measured by the total number of pub-
lished papers per year (Appendix S2: Fig. S1). Second,
we manually went through 3,856 abstracts of papers
published between 1995 and 2019 in three journals with
a long history of publishing biodiversity studies: Ameri-
can Naturalist, Ecology, and Ecography (details are in
Appendix S2). We found that ISA is a marginal topic
when compared to patterns of CSA, beta diversity, and
community composition, as well as processes such as
biotic interactions (Appendix S2: Fig. S2). Since mea-
surement of ISA requires exactly the same data as analy-
sis of beta diversity, the lack of attention cannot be
explained by a lack of data. We propose three reasons
for this gap. First, there is a variety of approaches for
measuring ISA, with little guidance on the advantages
and disadvantages of each approach. Second, it is not
always clear why ISA may be important or useful when
studying biodiversity. Third, little is known about the
theoretical connections, or lack thereof, between ISA
and other biodiversity patterns.
In this paper, we first review the current methods to

measure ISA. We sort the methods according to the
types of data that ecologists are likely to encounter, and
we compare the methods on empirical data sets and on
simulated pairs of species with known ISA. Next, we
address why ISA can be an important facet of biodiver-
sity, and we outline the theoretical links between ISA
and other fundamental facets of biodiversity. We offer
guidelines to select the appropriate approach to analyz-
ing ISA based on the question of interest and particular
type of data at hand. We hope that our overview will
stimulate the study of ISA in biodiversity assessments
alongside the more traditional spatial measures.

SCHOOLS OF THOUGHT

Measurement and analysis of ISA have been
approached by several schools of thought, with each of
these typically working with a particular data type
(Fig. 2) and research agenda. While each of these
schools of thought has generated conceptually diverse
measures of ISA, there has been little cross-fertilization.
The first school uses non-spatial information on pres-
ence/absence (or abundance) of species in different sites
and has focused on tests of hypotheses related to assem-
bly of ecological communities (Cody and Diamond

1979) by comparing the observed patterns of ISA with
simulations of null models (Gotelli and Graves 1996,
Ulrich and Gotelli 2010, Sanderson and Pimm 2015).
The second school uses similar non-spatial metrics, but
has been more descriptive, identifying groups of species
that are frequently observed together, a typical goal in
phytocoenology (Braun-Blanquet 1964). It relies on
methods such as ordinations and cluster analysis (ter
Braak 1987, Šmilauer and Lepš 2014). The third school
comes from the field of geostatistics (Cressie 2010) and
uses the spatial position of the sites to show how covari-
ance between two species changes with spatial distance
(Wagner 2003). The fourth school is the analysis of spa-
tial point patterns (Wiegand and Moloney 2014, Badde-
ley et al. 2015), which requires the most detailed data on
the spatial positions of individuals, and offers the richest
inference. Below we review the specific measures coming
from these diverse schools of thought.

SPATIALLY IMPLICIT MEASURES OF ISA

We begin our review with the simplest and oldest (For-
bes 1907) way to measure ISA using indices that quan-
tify, in a single number, the association between two or
more species, irrespective of the spatial distance among
sites. This is also the most widely used approach, since it
is applicable to any data that can be expressed as a com-
munity matrix Y, which describes the distribution of S
species (rows) over n sites (columns; e.g., Gotelli 2000),
but others may transpose these. Each element yij con-
tains either binary incidence or some measure of abun-
dance, and i∈ 1:S and j∈ 1:n. Since ISA measures that
only use Y consider no information on the spatial loca-
tion of the sites, the approach is spatially implicit.
To date, nearly 100 indices have been proposed to cap-

ture ISA in binary co-occurrence data (Hubálek 1982,
Rajagopalan and Robb 2005, Legendre and Legendre
2012, Ulrich and Gotelli 2013, Arita 2017) and for abun-
dance data (Legendre and Legendre 2012, Legendre and
De Cáceres 2013), although many fewer are widely used
in ecology. Some of the pairwise indices were developed
specifically to capture ISA while others were adopted
from the literature on beta diversity (Hubálek 1982,
Legendre and Legendre 2012, Arita 2017). Most of the
indices we describe are available through R packages,
such as vegan (Oksanen et al. 2019), EcoSimR (Gotelli
et al. 2015), bipartite (Dormann et al. 2008), and beta-
part (Baselga and Orme 2012), as listed in Tables 2, 3.

Pairwise associations

The conceptually simplest approach is to analyze
associations between binary occurrences of two species.
Table 2 lists some of the typical pairwise indices of asso-
ciation for binary data that have been widely used, or
that represent a unique approach to capturing ISA. They
are based on four different quantities: the number of
sites occupied uniquely by species 1 (c) and species 2 (b),
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the number of sites where both species co-occur (a), the
number of sites where none occurs (d), and n =-
a + b + c + d. These indices vary in their interpreta-
tion; the widely used C-score (Cseg = bc), for example,
gives the number of pairs of sites with a “checkerboard”
pattern (i.e., one site hosts only species 1, the other only
species 2), and it is a measure of segregation between
two species. In contrast, togetherness (Ctog = ad) is a
measure of attraction between species, but the Cseg and
Ctog are not complements (i.e., low Cseg does not imply
high Ctog). Another widely used example is the Jaccard

index (of association, not beta diversity), a measure of
spatial overlap, which describes the proportion of sites
occupied by both species among all occupied sites
(Cjacc = a/(a + b + c)). Further, the indices vary in the
range of possible values, such as [−1, 1], [0, 1], or [0, ∞).
Thus, it is important to be familiar with both the inter-
pretation and interval of these indices, particularly in
their raw form (as opposed to their Z-score; Hubálek
1982, Legendre and Legendre 2012).
Table 3 lists some commonly used indices for pairwise

ISA in abundance data. The first family includes both

FIG. 2. Approaches to capturing inter-specific spatial association (ISA) among species, classified by the broad ecological
schools of thought, together with typical data that are used in the approaches. Note that there is a gradient of the amount of spatial
information (detail) in the data. With the exception of Programita, all the listed software are R packages.
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parametric (e.g., CAcor) and nonparametric (e.g., CArho)
indices of covariance and correlation. Another family
includes indices that are extensions of the incidence-
based similarity measures; an example is Růžička simi-
larity CAruz, which is one of the abundance-based ver-
sions of Jaccard’s index for binary data (Legendre and
De Cáceres 2013).

Higher-order, matrix-wise, and per-species indices

When the aim is to quantify the overall magnitude of
ISA in the entire matrix Y in a single number, one option

is to simply use the mean or median of all pairwise asso-
ciations (or only negative or only positive associations)
in the species-by-species association matrix Z. However,
focusing only on pairwise comparisons ignores interac-
tions of higher order (i.e., interactions between three or
more species; Harris 2016). Some methods can capture
N-wise species associations when applied to the rows of
Y (Baselga 2017, Arita 2017). The problem with these
indices is their sensitivity to double zeroes and it is still
unclear how common the higher order associations (i.e.,
motifs; Milo 2002) are in the real world (Marion et al.
2017). Finally, Legendre and De Cáceres (2013)

TABLE 2. Measures of ISA for binary community data.

Measure Reference Symbol Formula or description R code in

(A) Pairwise
C-score Stone and

Roberts (1990)
Cseg bc bipartite::C.score

EcoSimR::c_score
vegan::designdist

Scaled C-score Ulrich and
Gotelli (2013)

CsegSc
bc

n n�1ð Þ=2 vegan::designdist

Togetherness Stone and
Roberts (1992)

Ctog ad bipartite::togetherness
vegan::designdist

Scaled togetherness Ulrich and
Gotelli (2013)

CtogSc
ad

n n�1ð Þ=2 vegan::designdist

Jaccard similarity Jaccard (1901) Cjacc
a

aþbþc betapart::betapart
vegan::betadiver

Dice-Sorensen
similarity

Dice (1945),
Sørensen (1948)

Csor
2a

2aþbþc betapart::beta.pair
vegan::betadiver

Coefficient of
association

Forbes (1907) Cforbes
an

aþbð Þ aþcð Þ vegan::designdist

Alroy’s coefficient
(a new take
on Cforbes)

Alroy (2015) Calroy
a zþ ffiffi

z
pð Þ

aþbð Þ aþcð Þþa
ffiffi
z

p þbc
2

where z = a + b + c

vegan::designdist

Pearson tetrachoric
correlation

Pearson and
Heron (1913)

Cpears
ad�bc

aþbð Þ cþdð Þ aþcð Þ bþdð Þ½ �0:5 vegan::designdist

Mid-P variant of
Fisher’s exact test

Kallio et al. (2011),
Tóth et al. (2019)

CFETmP

∑
xmin ≤ x≤ a

i

x

� �
n� i

j�x

� �
n

j

� �
0
BB@

1
CCA�

i

a

� �
n� i

c

� �

2
n

j

� �
where i = a + b, j = a + c,
and x is the possible number
of overlaps, and xmin = max(a-d, 0)

https://github.com/
anikobtoth/FCW

Matching coefficient Sokal and
Michener (1958)

Cmatch
aþd
n vegan::designdist

(B) Matrix-wise
Variance ratio Schluter (1984) Cratio S2

T=∑σ2, where S2
T is the

variance of per-site species
richness and σ2 is the sum of
per-species variances of incidences.

EcoSimR:v_ratio
https://github.com/
mcglinnlab/vario

Checker score Gotelli (2000) Cchecker Number of species pairs forming
perfect checkerboard distributions.

EcoSimR::checker

Number of unique
species combinations

Gotelli (2000) Ccombo Number of species that always co-occur. EcoSimR::species_combo

Network connectance Dormann
et al. (2009)

Cconn
F
Sn, where F is the number
of all co-occurrences.

bipartite::networklevel

Notes: From more than 70 measures (Hubálek 1982, Legendre and Legendre 2012, Keil 2019), we have included those that have
either been popular, recommended based on suitable properties, or that represent a distinct approach to ISA. For pairwise indices, a
is the number of sites where both species co-occur, c and b are numbers of sites occupied uniquely by each species respectively, d is
the number of sites where none of the species occur, n = a + b + c + d. For matrix-wise indices, where n and �α are the mean number
of occupied sites per species the mean number of species per site, respectively, and S and n are numbers of all species and sites in the
matrix, respectively.
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proposed an index of contribution of a single locality to
the overall beta diversity in Y. The same index can be
calculated for rows instead of columns of Y, thus becom-
ing a measure of species contribution to overall associa-
tion, but we are unaware of a study that employs such
an approach.

Statistical significance, null models, Z-scores

There are several ways to calculate the probability that
the observed metric has been produced by chance given
the null expectation that there is no ISA, i.e., that species
are independent on each other. The simplest test of sig-
nificance of association in a two-species binary matrix is
Fisher’s exact test (Arita 2016), which is identical to the
more complex procedure of Veech (2013). However,
when more than two species are involved, or when the
data are abundances rather than incidences, a random-
ization procedure can produce the null expectation of a
given ISA metric (see, e.g., Gotelli 2000, Ulrich and
Gotelli 2010, Gotelli et al. 2015). Further, the deviation
from the null expectation can also be used as its own

ISA metric, such as the Cforbes and CFETmP metrics
(Table 2), and the so-called Z-score (Gotelli and
McCabe 2002, Ulrich et al. 2009, Ulrich and Gotelli
2013), defined as (Eraw − Eexp)/SDexp, and where Eraw is
the ISA metric (e.g., from Table 2 or 3) calculated on
observed data, Eexp is the null expectation of the metric,
and SDexp is the standard deviation of the null expecta-
tion.

SPATIALLY EXPLICIT MEASURES OF ISA

Spatial structure between sites, individuals, and/or
geographic ranges can be critical. Consider the simple
example in Figure 3 in which the same community
matrix represents either attraction or segregation. The
aforementioned spatially implicit metrics of ISA conflate
these patterns, and a spatially explicit approach needs to
be adopted. When spatial coordinates of sites or individ-
uals are available, one way to make the ISA spatially
explicit is to only consider pairs of sites that are within a
given distance interval when using any of the metrics
from the previous section (Tables 2 and 3), and then to

TABLE 3. Select measures of ISA for abundance data.

Measure Reference Symbol Formula or description Notes R code in

(A) Pairwise
Covariance Legendre and

Legendre (2012)
CAcov,
CAcov_hell

1
n�1∑

n

i¼1
xi�xð Þ yi�yð Þ With optional

transformation
(Hellinger, log,
sqrt) of raw
abundances.

stats::cov

Pearson correlation
(scaled
covariance)

Legendre and
Legendre (2012)

CAcor,
CAcor_hell

CAcov xyð Þ
σxσy With optional

transformation
(Hellinger, log,
sqrt) of raw
abundances.

stats::cor

Spearman’s Rho Legendre and
Legendre (2012)

CArho CAcor between the rank
values of x and y

stats::cor

Chi-squared
distance

Lebart and
Fénelon (1971),
Legendre and De
Cáceres (2013)

CAchi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþþyþ
� �

∑
n

i¼1

1
xiþyi

xi
xþ
� yi

yþ

� �2
s

vegan::decostand
with stats::dist

Hellinger
distance

Rao (1995),
Legendre and
De Cáceres (2013)

CAhell
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

ffiffiffiffiffi
xi
xþ

q
�

ffiffiffiffi
yi
yþ

q� �2
s

vegan::decostand
with stats::dist

Percentage
difference
(former “Bray-

Curtis” index)

Odum (1950),
Legendre and
De Cáceres (2013)

CAbray

∑n
i¼1 xi�yij j
xþþyþ

One of the
abundance-based
variants of Csor

vegan::vegdist

Růžička
similarity

Růžička (1958),
Oksanen
et al. (2019)

CAruz 2CAbray

1þCAbray

One of the
abundance-based
variants of Cjacc

vegan::vegdist

(B) Matrix-wise
N-wise Růžička Baselga (2017) CAruzN Long formula, see

Baselga (2017)
Multi-species
version of CAruz

betapart::beta.
multi.abund

Variance ratio Ulrich and
Gotelli (2010)

CAratio Same as Cratio (Table 2)

Notes: From the plethora of existing measures, we have included those that have been popular, recommended, or that represent a
distinct approach to ISA. Specifically, we selected three correlation-based indices, two distance-based indices, two abundance-based
variants of the binary indices, and two matrix-wise indices. Here x and y are the vectors of abundances of two species, x and y are
their means, x+ and y+ are their sums, σx and σy are their standard deviations, xi and yi are abundances at site i, and n is the total
number of sites.
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examine a range of distances. This is also the idea behind
community variograms (Wagner 2003) described below.
A point pattern-based version of this, when the location
and identity of each individual are known, is to use
bivariate pair correlation functions, which describe posi-
tive and negative ISA between individuals over continu-
ous distance (Wiegand and Moloney 2014). In the
following section, we describe principles of these two
approaches, and refer to software implementations.

Community variograms

Community variograms, borrowed from geostatistics,
use the species-by-site community matrix Y together
with spatial coordinates of each site (Wagner 2003). A
community variogram then expresses the species-by-
species variance–covariance matrix Z(r) as a function of
spatial distance or lag r between sites and allows the user
to analyze within-species (CSA) and between-species
(ISA) covariances at a single distance and their change
over different distances. The covariance calculated on
binary data is closely algebraically tied to the Cseg or
Ctog metrics and their scaled versions (Table 2), which
summarize only negative or positive covariances respec-
tively. Apart from covariance, many of the metrics from
Tables 2 and 3 can be made distance-dependent by using
the community variogram framework.
To test for non-random patterns of spatial species

covariance an appropriate null model is required. The
distance-dependent Cratio is typically used with a null
expectation of Cratio = 1 under species independence,
which can be biased in a number of different ways (Pal-
mer and van der Maarel 1995). In particular, it can be
biased by patterns of within-species clumping. Even if
species are arranged independently on a landscape,

strong patterns of CSAwill create the appearance of spa-
tial segregation at least up to the scale of the within-
species clump size. Therefore, the most common type of
null model is one in which the within-species spatial
clumping is held constant but otherwise species are shuf-
fled randomly (Palmer and van der Maarel 1995, Rox-
burgh and Chesson 1998).
Even though the idea of community variograms has

been featured in prominent methodological reviews
(Dray et al. 2012), and elements of it occasionally appear
in empirical analyses (Wagner et al. 2005, Seabloom
et al. 2005, Kikvidze et al. 2005, Ovaskainen et al. 2017),
we are unaware of its direct use in estimating distance-
dependent ISA. At the same time, the method is close to
the truly spatially explicit description of ISA for commu-
nity matrices with additional spatial coordinates, and we
thus see potentially important applications. Two R pack-
ages that allow calculation of community variograms are
spacemakeR (Dray 2019) with the function variomultiv,
and package vario with the function vario (available
online).8

Point pattern analysis

Point patterns capture facets of ISAwhen the position
and identity of every individual within a spatial domain
is known, offering the most accurate and spatially expli-
cit quantification of ISA. However, such detailed data
are also costly and thus relatively rare, and they have
limits when applied to mobile organisms. Consequently,
analyses of ISA based on point patterns are less com-
mon than analyses based on community matrices. Here,
we focus on bivariate pair correlation functions and P-
M classification scheme (Wiegand et al. 2007b, Wiegand
and Moloney 2014).
The bivariate pair correlation function g12(r) measures

the association between two species 1 and 2 at different
spatial scales (Stoyan and Stoyan 1994, Wiegand et al.
2007b); it relates to the density of species 2 at distance r
of the individuals of species 1. Positive association (at-
traction) occurs for g12(r) > 1 (larger than expected
neighborhood density) and negative association (segre-
gation) for g12(r) < 1 (smaller than expected neighbor-
hood density). Furthermore, the cumulative version of
g12(r) is the K function K12(r). Popular software to calcu-
late g12(r) and K12(r) are Programita (Wiegand and
Moloney 2004, 2014), and R package spatstat (pcfcross
function; Baddeley et al. 2016).
The P-M classification scheme provides a way to fur-

ther classify a spatial pairwise ISA as either indepen-
dent, fully segregated, partially overlapping, or “mixing”
at a given spatial lag r using a combination of the Z-
score transformed statistics of nearest neighbor occur-
rence (P) and neighborhood density (M; Getzin et al.
2014). This is best used to summarize the overall ISA
structure at a given spatial scale (Getzin et al. 2014). It

FIG. 3. The problem of disregarding the importance of spa-
tial distance in ISA. (a) A single community matrix can poten-
tially reflect (b) two different spatial arrangements of the
community, each with a different magnitude of ISA; the two
species in the left spatial matrix are more attracted, while on the
right they are more segregated, yet this spatial arrangement is
not reflected in the community matrix. 8https://github.com/dmcglinn/vario
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can be calculated using the Programita software (Wie-
gand and Moloney 2004, 2014).
Null models for point patterns. A well-developed tool-

box is available to those seeking to compare observed
ISA summary statistics [e.g., g12(r), K12(r)] with those
expected under the null expectations of independence
(Wiegand and Moloney 2014). These null models are
based on breaking the association between species, while
keeping all of the other properties of single-species point
patterns (e.g., CSA) intact. Here, we note that the
heterogeneous point process null models (also combined
with pattern reconstruction) can be useful when estimat-
ing biotic interaction from occurrence. Notably, this can
be done without environmental data by assuming that
the spatial range of biotic interactions is shorter than
the scale of environmental autocorrelation (Wiegand
et al. 2007b). Null models for point patterns are imple-
mented in Programita software (Wiegand and Moloney
2004, 2014) and in the spatstat R package (Baddeley
et al. 2016).

COMPARISON OF THE MEASURES

In order to get a comprehensive basis for recommen-
dations, we compare the performance of the approaches
on a common set of empirical and simulated communi-
ties. Our aim is to assess redundancy among the
approaches, as well as their sensitivity to the common
variables such as number of sites, number of species,
magnitude of conspecific aggregation, or spatial grain.
We are also interested in how well the different measures
capture negative associations (i.e., segregation) com-
pared to positive associations (attraction).

Spatially implicit measures and empirical data

Our goal in this exercise was to calculate the common
metrics of ISA for a set of spatially implicit species-by-
site matrices, and to see how the metrics correlate with
each other. We evaluated the metrics in Table 2 using
476 empirical binary community matrices collated by
Atmar and Patterson (1995) and Ulrich and Gotelli
(2010), and the metrics in Table 3 using 186 empirical
abundance matrices collated by Ulrich and Gotelli
(2010). We excluded three binary matrices and 52 abun-
dance matrices with too little information to allow
meaningful calculation of all of the indices, or with neg-
ative or positive infinity values of some of the metrics.
For the pairwise metrics, we averaged them over the
species-by-species association matrix Z to obtain a single
number comparable with the matrix-wise measures. We
subjected the metrics to principal components analysis
(PCA), for which we transformed some of them to have
an approximately normal distribution. We plotted the
PCA as an ordination biplot, and we also plotted a
graph representation of the correlation matrix of the
measures (Fig. 4). The correlation matrices are in
Appendix S3.

In both the incidence- and abundance-based spatially
implicit indices, we found clear differentiation along the
PCA axes (Fig. 4a and b) and in the graph (Fig. 4c and
d), reflecting the different aspects of ISA. In binary met-
rics, there was a clear cluster of similarity-based indices
(Cjacc, Csor), Alroy’s index (Calroy), and connectance
(Cconn; Fig. 4a and c). Two measures that measure
departure from Poisson randomness are CFETmP and
Cforbes, which were grouped together. The C-score
(CsegSc) and its counterpart, togetherness (CtogSc), the
matching coefficient (Cmatch), the checkerboard score
(Cchecker), and number of unique combinations (Ccombo)
were largely unrelated to the rest of the metrics. In the
abundance-based metrics, we found similar clustering of
the similarity-based ISA metrics (CAruz, CAbray, CAchi,
CAhell), while the correlation-based metrics (CAcor,
CAcor_hell, CArho) formed another group.
Among the incidence-based metrics, only Ccombo was

strongly correlated with the total number of sites in a
matrix (n), while only Cchecker correlated strongly with S,
the total number of species (Fig. 4, Appendix S3).
Covariance-based measures (CAcov, CAcov_hell) grouped
together with the total number of sites n, while most
metrics correlated only weakly with S (Fig. 4,
Appendix S3).

Spatially implicit measures and spatially explicit
simulations

In the second exercise, we devised simulations with
known magnitude of ISA between two species (Fig. 5,
Appendix S4) to illustrate how the different approaches
recover the known ISA. In contrast to spatially implicit
simulations performed in other studies (Gotelli 2000,
Ulrich and Gotelli 2010), we simulated the position of
every individual within a bounded domain. In each sim-
ulation, we generated point patterns of two species, with
a given magnitude of ISA between them, and with vary-
ing conspecific aggregation and number of individuals
per species.
We modeled ISA as dependent on spatial distance

(Fig. 5b), and it was controlled by a single parameter that
we call ISA, with negative values for segregation (ISA <
0), zero for independence (ISA = 0), and positive for
attraction (ISA > 0; Fig. 5). To calculate measures based
on incidence or abundance, we converted the point pat-
terns to grids of varying resolutions (grains). Across simu-
lations, we measured performance of the metrics from
Tables 2 and 3 as their Spearman correlation with the
ISA parameter. We also examined how the performance
was affected by spatial grain (Appendix S4: Fig. S3) and
magnitude of conspecific spatial aggregation (CSA;
Appendix S4: Fig. S4). Detailed description of the simula-
tions, and their analysis, is in Appendix S4, and complete
code is in R package spasm (see Code and Data).
We found that the best correlation with overall ISA,

as well as correlation with both positive ISA (attraction)
and negative ISA (repulsion), was exhibited by Pearson’s
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tetrachoric correlation (Cpears), Forbes index (Cforbes),
and the mid-P variant of Fisher’s Exact Test (CFETmP)
for binary data, and Spearman’s correlation (CArho) and
Hellinger distance (CAhell) for abundance data (Fig. 6).
The best overall Spearman correlations between the simu-
lated ISA and its estimated measures were around 0.75
(Fig. 6), which we attribute to the inability of the spatially
implicit measures to capture the distance-dependent part

of ISA (Fig. 3). We found no clear indication that either
abundance or incidence-based metrics performed best.
We also found that measures based on correlation (Cpears,
CArho, CAcor, CAcov), or on deviation from an expected
null association (Cforbes, CFETmP) performed better in cap-
turing ISA, while similarity measures (Csor, Cjacc, CAbray,
CAruz) performed worse. Refining the spatial grain of the
analysis, and increasing the magnitude of CSA, had

a) b)

c) d)

FIG. 4. Comparison of ISA metrics calculated on empirical community matrices of Atmar and Patterson (1995) and Ulrich and
Gotelli (2010). Panels a and b use the binary measures from Table 2, and are based on binary (presence/absence) version of all
matrices. Panels c and d use the abundance-based measures of Table 3, and use only the abundance matrices of Ulrich and Gotelli
(2010). Panels a and b show the first two axes of principal components analysis (PCA), panels c and d show representations of cor-
relation matrices between the metrics. Red indicates variables that are not ISA metrics (number of sites n, total number of species S,
total number of incidences, total abundance of all individuals, Whittaker’s index).
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mostly negative or no effect on the performance of the
metrics (Appendix S4: Figs. S3 and S4), although there
were exceptions.
Importantly, we found that the spatially implicit met-

rics tended to saturate at extreme negative (ISA < 10)
association (Appendix S4: Fig. S2), most likely because
the community matrices are identical above these
extreme ISAvalues (demonstrated in Fig. 3). Thus, most
abundance-based metrics showed weak overall correla-
tion with repulsion (Fig. 6b), with the exception of the
distance-based Růžička (CAruz) and percentage differ-
ence (CAbray) indices.

Spatially explicit measures and spatially explicit
simulations

Here, we used the two-species simulations to illustrate
community variograms and pair correlation functions.
Our goal was to show the potential of these methods,
rather than to perform the same comprehensive evalua-
tion as above, since these techniques do not measure
ISA in a single number, but as a function of spatial dis-
tance r. Because of that, they have the potential to
recover the shape of the entire probability density func-
tion fsp2(r) from Fig. 5b. For the spatially explicit
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FIG. 5. (a) Simulated spatial distributions of individuals (points) of two species (sp1 and sp2) in a square domain under three
levels of conspecific aggregation (CSA) of sp1, and five levels of interspecific association (ISA). (b) Truncated exponential probabil-
ity density function [fsp2(r) (Keil 2014, 2019)] describes how likely we are to observe an individual of sp2 at a given distance from
any individual of sp1. The shape of fsp2(r) depends on a single parameter (here called ISA) that represents various magnitudes of
interspecific repulsion (left) and attraction (right), and their relationship with distance.
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techniques, we performed nine simulations that corre-
spond to the panels of Fig. 5a (the only difference is that
we used 200 individuals per species). For the purpose of
fitting the community variograms, we used a single grid
resolution with 20 cells along each side of the simulated
domain.
Community variograms (Fig. 7a) estimated the rela-

tionship between distance r and negative covariance in a
way that matched the shape of the original fsp2(r) from
Fig. 5b. However, they were weak at capturing the spa-
tial pattern of attraction when there was a confounding
effect of strong conspecific dispersion (CSA > 0.01). In
contrast to community variograms, pair correlation
functions more accurately estimated the distance-
dependent ISA (compare Fig. 5b with Fig. 7b), i.e., the
estimated relationship between distance and pair corre-
lation function closely matches the shape of fsp2(r) from
Fig. 5b. Similarly to community variograms, there was a
somewhat limited performance for attraction and high
CSAvalues, but the problem was less severe. Overall, the
point pattern-based bivariate pair correlation functions
provided the most complete picture of the “true” simu-
lated ISA pattern.

RECOMMENDATIONS

Based on our comparisons of the methods and on the
existing literature, we make several recommendations for
capturing ISA from observational data.

Best indices

There is a variety of indices that were designed to cap-
ture different aspects of ISA and some of them are
uncorrelated with the others (see our results, but also
Hubálek [1982]). Thus, in empirical assessments, we rec-
ommend not relying on a single metric (see also Ulrich
and Gotelli [2013]). Overall, we suggest that the most
promising indices for spatially implicit analyses are those
that can capture both negative and positive ISA. They
should also offer the option to be eventually integrated
into, or compared with, spatially explicit analyses such
as community variograms, it should be possible to con-
trast them with indices of conspecific aggregation, and
they should be applicable in association matrices of
parametric joint species distribution models (Ovaskai-
nen et al. 2017). For abundance data, these are covari-
ance (CAcov) and Pearson correlation (CAcor), coupled
with a data transformation (e.g., Hellinger or log) if
appropriate (Legendre and Legendre 2012). For inci-
dence data, these are the C-score (Cseg, CsegSc) and
togetherness (Ctog, CtogSc), which capture the positive
and negative ISA, respectively, and are mathematically
linked to covariance. We caution that that low C-score
values do not indicate high togetherness, and vice versa.
Thus, both measures should typically be employed.
From the other indices for pairwise binary data,

among the all-purpose metrics that capture both repul-
sion and attraction, we recommend the mid-P index
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FIG. 6. Ability of pairwise spatially implicit metrics from Tables 2 and 3 to recover the magnitude of ISA from spatially explicit
simulations. Panel a shows overall correlation between the true ISA and the metric. Panels b and c show the correlation when only
inter-specific repulsion is considered (ISA < 0) or when only positive attraction is considered (ISA > 0). Absolute values of Spear-
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(CFETmP) and Forbes’s coefficient of association
(Cforbes), both of which have the advantage of explicitly
quantifying the deviation of the observed ISA from the
ISA expected under independent distribution of inci-
dences. Based on its performance, as well as ability to
capture repulsion as well as attraction, we also recom-
mend Pearson’s tetrachoric correlation (Cpears), which is
also recommended by Hubálek (1982). Jaccard’s index
(Cjacc) is a good alternative, since it captures both nega-
tive and positive ISA, and it can easily be interpreted as

proportional overlap, although it may not reflect the
overall ISA as accurately as the correlation-based
indices. For pairwise abundance data, apart from covari-
ance and correlation-based parametric indices, we advo-
cate for the Spearman rank-rank correlation (CArho),
since it requires no prior transformation, and it captures
both negative and positive ISA reliably.
Concerning the community-wide measures that quan-

tify the magnitude of ISA for all species in a single num-
ber, an obvious choice is to use summarized pairwise

FIG. 7. Ability of two spatially explicit approaches to recover ISA patterns of the two species from Fig. 4b. (a) Community vari-
ograms calculated on abundance data obtained by aggregation of the point pattern in a 20 × 20 pixel grid. Also, 200 points were
simulated for each species, instead of the 100 points in Fig. 5. (b) Bivariate pair correlation function calculated directly from the
point patterns.
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metrics, although one needs to beware that some sum-
marizations (e.g., averaging) blend repulsions and attrac-
tions. One way to avoid this problem is to decompose
the pairwise association matrix to positive vs negative
ISA, by separately summarizing positive vs negative
covariances in abundance data (this is also the approach
used in community variograms), or by considering both
togetherness and C-score in analyses of incidence data.

ISA is better spatially explicit

Our results highlight a serious limitation of spatially
implicit indices of ISA; they fail to consider spatial prox-
imity of two species when they are already 100% spa-
tially segregated (Fig. 3). The problem becomes more
severe toward finer spatial resolutions. This partly
explains why none of the examined spatially implicit
metrics gave a perfect correlation with the simulated
distance-dependent ISA, and why we observed the satu-
ration of performance toward extreme values of ISA in
our simulations (Appendix S4: Fig. S2). To address this
systematically, we recommend that whenever there is
information on spatial position of the sites, indices of
ISA are better considered as a function of spatial dis-
tance. Both the community variograms and point pat-
tern analysis offer straightforward ways to do that.
Going spatially explicit (when data permit) also makes

ISA more biologically interpretable, since it can identify
spatial distances over which biotic interactions really
matter. This can be done, for example, by integrating
community variograms into joint species distribution
models (JSDM; Warton et al. 2015, Ovaskainen et al.
2017, Zurell et al. 2018). Specifically, in a JSDM, the
spatially implicit species-by-species covariance (or corre-
lation) matrix Z can be replaced by distance-dependent
Z(r), as also mentioned by Ovaskainen et al. (2017).
Interestingly, however, the spatially explicit approach
can also separate ISA caused by short-distance interac-
tions from ISA caused by the environment without the
need of modeling the effect of the environment, as
demonstrated by Wiegand et al. (2012). The trick is to
use null models that only randomize individuals locally,
i.e., only within neighborhoods with radius R, which
removes potential signals of small-scale interactions at
scales r < R, if we can reasonably assume that environ-
mental conditions within the neighborhood are constant
(Wiegand et al. 2012).

Spatial scale

Most of the commonly studied facets of biodiversity
depend on spatial scale. In the case of ISA, scale has
been approached from two angles. The first focuses on
ISA as a function of the average area of a site in a com-
munity matrix, which is equivalent to spatial resolution
(grain) of a grid (�kland 1994, Hui 2009, Segurado
et al. 2012, Araújo and Rozenfeld 2013, McNickle et al.
2018). These studies show that ISA is grain-dependent,

but neither theory nor empirical observations predict a
systematic direction of the grain dependence; ISA-area
relationships can be increasing, decreasing, or hump-
shaped. One issue that complicates consensus in this
context is the use of various metrics of ISA across stud-
ies. Our simulations (Appendix S4: Fig. S3) show that
selection of the ISA metric affects the grain dependency;
for example, some metrics may have slightly hump-
shaped relationship with grain (e.g., C-score,
Appendix S4: Fig. S3, see also McNickle et al. [2018]),
while other metrics may monotonically increase or
decrease with grain (Appendix S4: Fig. S3). This is
something that the field needs to sort out before any
empirical scaling of ISA is explored and interpreted.
The second approach to spatial scaling of ISA uses

distance instead of grain in the form of community vari-
ograms or bivariate pair correlation functions (Wagner
2003, Wiegand and Moloney 2014). One advantage of
this approach is its straightforward biological interpreta-
tion, particularly in the context of biotic interactions.
Both the grain-based and distance-based approaches to
the scaling of ISA can be combined in a single analysis
(see Wiegand et al. 2012). Finally, point-pattern analysis
has theory that links the area-based with the distance-
based approaches to ISA (Wiegand and Moloney 2014).
We thus recommend that future investigations of ISA
should explicitly embrace the issue of scale (both the
grain and perhaps also extent) by focusing on the ISA–-
area relationships (Araújo and Rozenfeld 2013,
McNickle et al. 2018), or by focusing on the spatially
explicit approaches to ISA, which handle scale more nat-
urally than the spatially implicit ones.

Null models and Z-scores

Most of the literature on ISA emphasizes the impor-
tance of null models, be it spatially implicit (Ulrich and
Gotelli 2013) or explicit (Wiegand and Moloney 2014).
In Appendix S4: Figs. S3 and S4, we show that trans-
forming ISA indices to Z-scores makes them more
robust against the confounding effects of conspecific
aggregation or varying resolution, while (Ulrich et al.
2018) show that null models also account for the con-
founding effect of total species richness (S). The same
sentiment underlies Wiegand and Moloney (2014): to
analyze spatially explicit patterns of ISA, one should
contrast them against a null expectation of no ISA.
However, null models can be computationally demand-
ing, posing a problem for large biodiversity data; in such
cases analytical shortcuts may be handy. For example, in
spatially implicit methods, measures such as CFETmP or
Cforbes already have the deviation from the expected ran-
domness implicit in their definition.

Measuring macroecological patterns of ISA

To empirically document patterns of ISA, and their
generality or variation over broad spatial and temporal
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scales, we need analytical approaches designed specifi-
cally to measure ISA over broad scales. From all of the
reviewed approaches, we see community variograms as
the most promising, since (1) community variograms are
spatially explicit, offering rich biological interpretation;
(2) community variograms are applicable to a wide range
of data types, including structured site-by-species data
sets, such as the U.S. North American Breeding Bird
Survey (Sauer et al. 2017), data sets of metacommunity-
level pattern and process (e.g., the CESTES database;
Jeliazkov 2019), as well as classical large-scale data such
as the IUCN Red List biodiversity data; and (3) calcula-
tion of community variograms is computationally feasi-
ble.
Given that there is an ever increasing availability of

biodiversity data from large spatial extents (Jetz et al.
2012), we see an exciting opportunity here for explo-
ration of empirical macroecological patterns of ISA,
particularly through community variograms. Some of
the possible macroecological patterns to explore with
community variograms are latitudinal or altitudinal gra-
dients of ISA, and their relationship with patterns such
as distance decay of compositional similarity, with
distance-dependent CSA, or with broad geographic pat-
terns of species richness and rarity. This has not yet been
done, yet bringing ISA to macroecology may provide
new explanations for old patterns, for example through
the hypothetical (albeit controversial) link between ISA
and biotic interactions, or through a completely unex-
plored link between ISA and diversification.

ISA IN THE CONTEXT OF BIODIVERSITY

Now that we have demonstrated the ways that ISA
can be measured, we return to our earlier argument that
ISA deserves more attention in biodiversity research. To
study ISA in the context of biodiversity, one should be
aware of how it does, or does not, relate to other biodi-
versity metrics. In the sections below, we will show that
although there are biodiversity facets that are affected
by ISA, such as pairwise measures of beta diversity,
others are insensitive to ISA, including local and regio-
nal diversity, and their ratio (i.e., Whittaker’s index
[Whittaker 1960], and α, β, and γ diversity).

ISA and alpha diversity

First, we show that local species richness at any given
site can be sensitive to changes in ISA, while mean local
richness (α diversity) is insensitive to changes in ISA.
This argument was also made by Plotkin et al. (2000)
and Storch (2016), and is inherent in connections
between occupancy and species richness (e.g., Šizling
and Storch 2004, Arita 2017).
Let αj be local species richness at a site j, where j∈ 1:n,

and where n is the total number of sites within a given
spatial domain. Let Oi be the number of occupied sites
(i.e., occupancy) by species i, where i∈ 1:S, and where S

is the total number of species (i.e., gamma diversity) pre-
sent among sites. When we manipulate ISA in the system
but keep CSA constant, some values of αj change as a
result. For example, in Fig. 8a, a change from interspeci-
fic segregation to attraction results in corresponding
changes in each site’s αj (one site gains species and two
sites lose species).
Let us now consider the average local number of spe-

cies, α, across all sites, which can also be calculated as
the sum of prevalences Oi/n (Šizling and Storch 2004) as

α¼∑n
j¼1α j

n
¼ ∑

S

i¼1

Oi

n
: (1)

Importantly, Oi and Oi/n are spatially implicit, mean-
ing that it does not matter which sites are occupied, or
whether species are spatially attracted or segregated; as
long as Oi is constant, no rearrangement of occupied
cells in space has an effect on α. That is, α is insensitive
to ISA. For example, consider the scenario in Fig. 8a in
which there was a shift in the ISA from segregated to
attracted. Because Oi, n, and S remain constant, α will
not be affected by the change in ISA. Hence, an empiri-
cal assessment of biodiversity that summarizes net
change of α over many locations is blind to changes of
ISA. Further, this insensitivity of α propagates to
species–area relationships and to species accumulation
curves, as we mention below. Note, however, that α is
sensitive to changes in Oi/n, which is a measure of con-
specific aggregation (CSA).

ISA and gamma diversity

From a purely geometrical perspective, simply rear-
ranging mutual positions (ISA) of species within a given
spatial domain has no effect on total number of species
S (gamma diversity) in the domain (given that n is con-
stant). A more interesting question is what happens
when the effect is reversed, such as how ISA changes
when S increases or decreases. This has biological impli-
cations, since S limits the magnitude of ISA within a
given domain, which can also limit biotic interactions. It
also has methodological implications, since variation in
S across spatial domains can hinder direct comparisons
of ISA within these domains, which may require statisti-
cal treatment (Ulrich et al. 2018). Several propositions
about the relationship between ISA and S have been
made and some of them have been empirically tested.
The first was summarized by McGill (2010): as S in

the metacommunity increases, the weaker the associa-
tions will appear even in the presence of strong associa-
tions. This can be seen by considering that the total
number of possible pairwise associations in the domain
is S(S − 1)/2. If every species is significantly spatially
associated with k species in a symmetrical fashion, then
the total number of significant spatial associations in the
domain is (Sk)/2. Thus, for any given k < (S − 1), the
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total number of all possible pairwise associations
increases faster with S than the number of actually sig-
nificant associations.
The second proposition operates on relative abun-

dances. If the total area and density of individuals are
constant, but there is an increase of the total S, then the
average per-species abundance must decrease, which will
reduce the likelihood of detecting inter-specific co-
occurrences in communities (Hubbell and Foster 1986,
Lieberman and Lieberman 2007, Wiegand et al. 2007b,
2012, Volkov et al. 2009, Rajala et al. 2019).

The third proposition exposes the mathematical con-
straint on the possible values of negative associations in
a species-by-species association matrix (Brown et al.
2004). Simply put, if species A and B have strong nega-
tive association, then it is mathematically impossible for
a third species C to have strong negative association with
both A and B (Brown et al. 2004). Fox (2012) also
showed that, under the assumption that all species have
the same negative correlation with each other (e.g., due
to competition-induced compensatory dynamics), the
minimum possible value of the correlation approaches 0
as species richness increases. Thus, on average, the more
competing species are added to the metacommunity, the
weaker their observed average negative association gets.
The fourth proposition suggests that communities

with more species may only be stable if the interactions
get weaker on average, as found by May (1972) in an
analysis of the stability of Lotka-Voltera type multi-
species models. Stone (2016) generalized this proposition
by showing that stability and feasibility under increasing
species richness requires a reduction in the mean and
standard deviation of the value of the interspecific com-
petition coefficients.
Based on these arguments, we should expect the over-

all ISA to weaken as S increases. Indeed, Wiegand et al.
(2012) found that species associations were significantly
weaker in rich forest communities compared to species
poor ones, even after the null-expected associations were
taken into account.

ISA and beta diversity

Here we show how ISA is conceptually related to
aspects of beta diversity (i.e., the differentiation of species
composition in space, across sites). We also demonstrate
how one particularly popular matrix-wise measure of beta
diversity, Whittaker’s index, is insensitive to ISA, while
pairwise indices of beta diversity can be sensitive to ISA
(Fig. 8). Although we still lack the exact mathematical
theory for the latter, we show that point pattern analysis
may offer the right toolbox to build such a theory.
The connection between ISA and beta-diversity is best

illustrated on pairwise metrics applied to a spatially
implicit site-by-species community matrix Y. In short,
ISA is the association among species (Simberloff and
Connor 1979, Hubálek 1982, Bell 2005, Legendre and
Legendre 2012), whereas beta diversity is the similarity
among sites. In this simplified case, both ISA and beta
diversity are calculated using exactly the same data and
indices (Tables 2, 3); the only difference between them is
whether they are applied to the rows (“R-mode” of
Legendre and Legendre 2012) or columns of Y (“Q-
mode”). In other words, any index of beta diversity that
is normally applied to sites can be applied to species and
can be meaningfully interpreted as an index of ISA, and
vice versa (Legendre and Legendre 2012, Arita 2017).
For example, Araújo and Rozenfeld (2013) define a “co-
occurrence score” as the “ratio of the number of

FIG. 8. Insensitivity of nested species–area relationships
(SAR) and Whittaker’s index to ISA, as also mentioned by
Plotkin et al. (2000) and Storch (2016). (a) Two communities
consist of four square sites each, with four species (A, B, C, D)
either present or absent. These communities have constant
CSA, but differ in the magnitude ISA; species in the left com-
munity are segregated, those in the right one are attracted to
each other. (b) These communities can be described by spatially
implicit community matrices Y. From Y, we can calculate (c)
mean between-species Cjacc, (d) mean between-site Jaccard simi-
larity βjacc and Whittaker index of beta diversity s/α, and (e)
SAR. Both mean pairwise metrics (Cjacc and βjacc) are sensitive
to varying ISA (c, d), while Whittaker index and the SAR slope
remain constant even though ISA changes (e).
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geographical cells where species A and B co-occur to the
total number of occupied cells.” Although not stated, this
is equivalent to the classic Jaccard index for comparing site
similarity. Thus, the list of measures that have been typi-
cally used to measure ISA (Tables 2, 3) can be expanded
with Jaccard or Sørensen-type indices (Arita 2017). Inver-
sely, the list of commonly used measures of beta diversity
(Koleff et al. 2003) can be expanded by some typical ISA
indices. One exception is the Whittaker index (s/α = n/n,
where n is the average number of occupied sites per spe-
cies), which is identical for both the analysis by sites (s/α)
and by species (n/n); however, this index is different from
the pairwise indices of both beta diversity and ISA since it
does not capture the within-matrix similarity between sites
or species; instead, it only reflects the proportional matrix
fill, i.e., the fraction of cells in Y filled with 1s (Arita 2017).
Little has been written about the actual relationship

between beta diversity and ISA within a given spatial
domain, i.e., given constant n, S, and CSA. In other
words, what happens with beta diversity if we vary ISA
and keep everything else intact? We know that Whit-
taker’s index (s/α = n/n) must be insensitive to ISA,
which is demonstrated in Fig. 8, and which follows from
the aforementioned insensitivity of α to ISA (Eq. 1).
However, we are unaware of any study directly focusing
on the link between ISA and pairwise beta diversity. In
Fig. 8, we show a case of average pairwise between-site
Jaccard beta diversity being sensitive to ISA, and this is
new. Further, in Appendix S5: Fig. S1 we show that aver-
age pairwise between-site Jaccard beta is correlated with
average between-species Cjacc, albeit imperfectly. Šizling
et al. (2011) and McGlinn and Hurlbert (2012) hint on a
potential explanation by showing the relationship
between average pairwise Jaccard beta diversity and the
Whittaker’s index, which is modulated by the occupancy
frequency distribution (see also McGeoch and Gaston
[2002]). This reasoning could perhaps be extended to
provide a link between pairwise beta diversity and ISA.
In contrast to the spatially implicit indices for binary

and abundance data, the connection between ISA and
beta diversity is well known in analyses of point patterns
(Wiegand and Moloney 2014). The ISA-beta connection
can be demonstrated in the spatially-explicit version of
Simpson’s evenness index β(r) (Shimatani 2001, Wie-
gand and Moloney 2014: section 3.1.5.1). Unlike the tra-
ditional spatially implicit version of the Simpson’s index
(Simpson 1949; i.e., the probability that two randomly
selected individuals are heterospecifics), which is a mea-
sure of evenness, β(r) is a measure of beta diversity, since
it captures dissimilarity over a given distance (Shimatani
2001; i.e., the probability that two randomly selected
individuals distance r apart are heterospecifics). The
index is defined as

β rð Þ¼ ∑
S

i¼1
∑
S

j¼ 1

j≠i

f i f j

gij rð Þ
g rð Þ ¼ 1� ∑

S

m¼1

f 2mgmm rð Þ
g rð Þ : (2)

Note the two alternative but equivalent definitions. In
the first definition in Eq. 2, fi and fj are the relative abun-
dances of species i and j, gij(r) is the bivariate pair corre-
lation function describing the spatially explicit ISA of
species i and j and g(r) is the pair correlation function of
all individuals in the community, regardless of species
identity. As expected, if there are no spatial patterns of
ISA (i.e., when gij(r) = 1), we obtain the non-spatial
Simpson index, and depending on the abundances and
ISA of the different species, beta diversity will be larger
or smaller than this point of reference. The second defi-
nition in Eq. 2 operates purely with con-specific aggrega-
tion (CSA), measured by within-species pair correlation
function gmm(r). We can see that the spatially explicit
β(r) depends on the balance between the ISA and CSA,
whose overall effect sums up to 1.
We thus conclude that point pattern analysis, through

β(r), offers a comprehensive framework that can link
abundances, CSA, ISA, gamma diversity, and alpha
diversity, each with an exactly defined and mathemati-
cally tractable metrics. Not only does it stress the impor-
tance of making all of the diversity facets spatially
explicit, but it also potentially offers a roadmap for
future unification macroecology that deals with spatially
implicit data on abundances or incidences.

ISA, species–area relationships, and species–accumulation
curves

Here, we demonstrate that species–area relationships
and rarefaction curves are insensitive to ISA. We have
stated that α and S in a given domain are insensitive to
ISA, given that spatial extent is constant. These are the
two components of Whittaker’s index of beta diversity
(Whittaker 1960), which is S/α, and so Whittaker’s
index is insensitive to ISA. It means that nested
species–area relationships (SAR), which are exactly
related the Whittaker index over a continuous range of
α and S (Crist and Veech 2006) must also be insensitive
to ISA (Fig. 2).
When every individual’s spatial position and identity

is known, point pattern analysis also makes it clear that
there is no direct link between ISA and SAR. The rele-
vant equation is (Shimatani and Kubota 2004)

S rð Þ¼ ∑
γ

i¼1
Hi rð Þ (3)

where S(r) is number of species present within r from an
arbitrarily chosen “test” location, Hi is the spherical con-
tact distribution function for species i, which is the prob-
ability that the first neighbor of species i is distance r
away from the test location. S(r) becomes a species–area
curve when r is converted to πr2. Importantly, the Hi is
insensitive to ISA, since it is only based on the locations
of species i. We note that point pattern analysis also has
a scaling curve that is sensitive to ISA: the individual
species–area relationship (ISAR; Wiegand et al. 2007),
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which quantifies the species richness in neighborhoods
within radius r of a focal species f

ISAR f rð Þ¼ ∑
γ

i¼1
Dfi rð Þ (4)

where Dfi(r) is the bivariate nearest neighbor distribution
function (i.e., the probability that the nearest point of
species i is distance r away from an average point of focal
species f). Again, r can be converted to area as πr2.
Finally, we turn to species–accumulation curves, from

which the classical examples are the spatially implicit
individual-based and sample-based rarefaction curves
(Gotelli and Colwell 2001), and their spatially explicit
versions (McGlinn et al. 2019). In the former, individu-
als or samples are accumulated randomly, irrespectively
to their spatial position, which effectively breaks any
pattern of both CSA or ISA, making the spatially impli-
cit curves indeed insensitive to ISA. In the latter spatially
explicit case, samples (plots) are accumulated by nearest
neighbors, which makes these curves closely related to
SARs, which we have shown to be sensitive to CSA, but
insensitive to ISA. This is in line with the core idea of
partitioning of rarefaction curves to their components
(McGlinn et al. 2019), which are the regional species–-
abundance distribution, density of individuals, and con-
specific aggregation, but not ISA.

WHY SHOULD BIODIVERSITY SCIENTISTS CARE ABOUT ISA?

Why, in the context of biodiversity, should we consider
ISA patterns in space and time? And why should we care
about ISA, when we have just demonstrated that many of
the key biodiversity metrics are not affected by it? We
argue that if we aim to describe a more complete picture
of the multi-faceted nature of biodiversity, we need to
consider approaches designed specifically to capture ISA,
precisely because it is not captured by the traditional mea-
sures. Any biodiversity assessment that relies only on sim-
ple per-site measures of diversity and composition runs
into a risk of missing variation, or temporal change, in
ISA. Below we give more specific reasons for why captur-
ing ISA as a facet of biodiversity may be useful.

ISA as evidence for interactions

Perhaps the best known, albeit perennially controver-
sial, reason for analyzing patterns of ISA is a notion that
they give hints about biotic interactions among species
(Gotelli et al. 2010, Blois et al. 2014, Harris 2016,
Morueta-Holme et al. 2016, Thurman et al. 2019, Cala-
tayud et al. 2020). The effort that gained traction in the
1980s and 1990s (Cody and Diamond 1979, Connor and
Simberloff 1979), and has recently been revived with the
promise of joint species distribution models as a tool to
disentangle interactions from shared environmental
requirements among species (Warton et al. 2015, Ovas-
kainen et al. 2017, Zurell et al. 2018). The various

approaches of revealing interactions from presence-
absence co-occurrence data, as well as a suite of caution-
ary arguments against the endeavor, has been summa-
rized recently by Blanchet et al. (2020). While some of
the arguments presented in Blanchet et al. (2020) on
presence-absence data can be remedied by analysis of
abundance or point pattern data, we agree that the util-
ity of ISA as a direct evidence for interactions is limited.
Nevertheless, we argue that there are other reasons for
measuring ISA, which we give below.

ISA when interactions are given

Sometimes biotic interactions are not what we want to
infer from the data, because we already know how the
species interact. Examples are well documented trophic
interactions or mutualistic interactions. These known
interspecific relationships can generate hypotheses con-
cerning geographic patterns of ISA. For example, a
large-scale assessment of biodiversity change may specif-
ically look at patterns of ISA among pairs of pollinators
and plants. If there is a significant trend of spatial segre-
gation over time, it may indicate a potential disruption
of pollination services, a finding that could be further
investigated with additional data or experiments. Here
we see a particularly exciting prospect in bringing
together network ecology with biogeography.

ISA improves forecasts and predictions

ISA and its patterns are useful even when assuming
no mechanistic underpinning, because patterns can
improve predictions and forecasts based on inductive
logic, rather than causality. Examples of classical predic-
tive biodiversity patterns are the endemic-area relation-
ship predicting extinctions due to habitat loss (Keil et al.
2015), or richness–environment correlations that can be
used for spatial interpolations and predictions of diver-
sity patterns (Algar et al. 2009). Similarly, measurements
of ISA can potentially improve estimates of other met-
rics, for example estimates of site-specific species pools
(Bruelheide et al. 2020, Carmona and Pärtel 2021) or
predictions of species distributions in joint species distri-
bution models (Harris 2016, Norberg et al. 2019). In
both cases, the reason for why ISA can improve the pre-
dictions is not only as a proxy for species interactions,
but also because co-occurring species can act as proxies
for suitable environments that may be difficult to mea-
sure in the field.

ISA as a summary statistic

ISA captures a unique spatial pattern of communities,
on a par with other popular summary statistics such as
species richness or beta diversity. Simply reporting how
richness or beta diversity vary geographically repeatedly
proved to be among the most powerful starting stimuli
in the field, generating countless explanatory and
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testable hypotheses (Brown 1995, Gaston 2000, Lomo-
lino et al. 2010), and such patterns can be as useful for
our understanding as the processes that generated them
(Currie 2019). An example is the very existence of latitu-
dinal and altitudinal diversity patterns, which have fasci-
nated ecologists for centuries. Similar approach has
recently gained traction in summarizing empirical pat-
terns of co-occurrence. For example, Lyons et al. (2016),
Tóth et al. (2019), and Calatayud et al. (2020) have docu-
mented broad-scale patterns of ISA, and although they
do offer interpretations involving biotic interactions, these
are part of the post hoc interpretation of the documented
patterns, rather than the main goal of the analyses.

ISA as a benchmark for theories or mechanistic models

Rosenzweig and Abramsky (1997) describe the idea of
“dipswitch theory,” i.e., a theory that makes a bundle of
unique predictions, which are then compared with differ-
ent empirical patterns. The ability of the theory to fit not
just one, but multiple patterns, is then a step toward a
“stronger” test of the theory (McGill 2003). Here we
argue that ISA can allow for stronger tests of theories by
providing a unique biodiversity pattern that a theory
needs to fit. For instance, it has been demonstrated that
neutral theory (Hubbell 2001) or the maximum entropy
theory (Harte 2011) both reproduce realistic species–-
area relationships, but patterns of ISA, along with other
features, might help to distinguish among theories (see,
e.g., Ulrich 2004 and Bell 2005). Here, ISA seems partic-
ularly promising since it is largely independent on some
of the classical patterns such as species–area relation-
ship, or patterns of beta diversity, as we have demon-
strated. ISA can also be used together with inverse
approaches in individual-based models where known (or
hypothesized) individual-level interactions are explicitly
modeled and ISA patterns emerge at the community
level (Grimm and Railsback 2005). The underlying pro-
cesses structuring the community can then be inferred
by testing how closely the emerging patterns of the
model match the observed data. For example, May et al.
(2015) used a neutral individual-based model to quanti-
tatively predict patterns observed in a 50-ha tropical for-
est plot, including beta-diversity (Eq. 2). Surprisingly,
the model was able to match five emerging patterns
simultaneously, but was unable to match the species–-
area relationship and beta-diversity simultaneously,
pointing to missing processes. The ability to explain pat-
terns of ISA can thus provide useful information for val-
idating theories and mechanistic models.

CONCLUSION

We have argued that interspecific spatial associations
(ISA) are an underrepresented topic in biodiversity
science and macroecology, and that this is an important
knowledge gap worth exploring. Apart from its connec-
tion to biotic interactions, ISA can also provide a

benchmark for judging different types of ecological the-
ories, and it can serve as a summary statistic capturing
unique properties of nature. This is underscored by the
fact that many of the biodiversity statistics that have
been monitored are insensitive to ISA. We provide an
overview of the main approaches to measure ISA, which
we sorted into three main schools of thought, based on
the data that they use: spatially implicit indices, commu-
nity variograms, and bivariate pair correlation functions.
One of our main conclusions is that considering space,
and particularly spatial distance, is vital for the progress
of the field, and for any broad-scale assessment of pat-
terns of ISA in geographic space and in time. In all, we
hope that our overview of ISA, its measures, and its util-
ity provides a starting point for researchers interested in
broadening the scope of biodiversity facets that they
study.
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Lebart, L., and J. P. Fénelon. 1971. Statistique et informatique
appliqées. Dunod, Paris, France.
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