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Abstract. Pairwise ecological resemblance, which includes compositional similarity between sites (beta
diversity), or associations between species (co-occurrence), can be measured by >70 indices. Classical exam-
ples for presence–absence data are Jaccard index or C-score. These can be expressed using contingency table
matching components a, b, c, and d—the joint presences, presences at only one site/species, and joint
absences. Using simulations of point patterns for two species with known magnitude of association, I
demonstrate that most of the indices converge to a similar value and they describe the simulated association
almost identically, as long as they are calculated as a Z-score, that is, as deviation of the index from a null
expectation. Further, I show that Z-scores estimate resemblance on average better than raw forms of the
indices, particularly in the face of confounding effects of spatial scale and conspecific aggregation. Finally, I
show that any single of the matching components, when expressed as Z-score, can be used as an index that
performs as good as the classical indices; this also includes joint absences. All this simplifies selection of the
right resemblance index, it underscores the advantage of expressing resemblance as deviation from a null
expectation, and it revives the potential of joint absences as a meaningful ecological quantity.
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INTRODUCTION

Ecological resemblance (Legendre and Legen-
dre 2012) is a fundamental ecological quantity
that encompasses both similarity of species com-
position between sites (beta diversity) and co-
occurrence patterns among species, and these
are the Q- and R-mode analyses, respectively
(Legendre and Legendre 2012, Arita 2017).
Among the many measures of ecological resem-
blance, particularly popular, are indices of pair-
wise similarity or association for binary
presence/absence data, with around 80 proposed,
as reviewed by Hub�alek (1982), Koleff et al.
(2003), Rajagopalan and Robb (2005), Legendre
and Legendre (2012), Ulrich and Gotelli (2013)

(Appendix S1). These reviews provide guidance
for the selection of appropriate indices, based on
criteria such as symmetry, additivity, sensitivity
to number of sites or species, or interpretability.
Even though only a fraction of these indices is
widely applied, the task of selecting the right
index may still be daunting. Further, different
researchers may deploy different indices, hinder-
ing synthesis, and comparisons among studies.
All of the indices for binary data can be calcu-

lated using abcd matching components, which
follow contingency tables notation: a, the number
of joint presences; b, the number of presences for
only one species (or site); c, the number of pres-
ences for the other species (or site); and d, the
number of joint absences. A classical example is
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Jaccard index (a/(a + b + c)) (Koleff et al. 2003),
which has been used mostly in Q-mode analyses.
Other examples are C-score (bc) and togetherness
(ad) often used in R-mode (Ulrich and Gotelli
2013). However, all of the indices can be used in
both Q- and R-mode, that is, for rows or columns
of a species-by-site incidence matrix (Hub�alek
1982, Legendre and Legendre 2012, Arita 2017).

To standardize the indices, they can be
expressed as Z-score (Gotelli and McCabe 2002,
Ulrich et al. 2009, Ulrich and Gotelli 2013):

Z ¼ Eraw � Eexp

SDexp
(1)

where Eraw is the index calculated on observed
data, Eexp is the null expectation of the index, and
SDexp is the standard deviation of the null expec-
tation. This is similar to standardized effect size in
meta-analysis (Gurevitch et al. 1992, Ulrich et al.
2009), and it quantifies the deviation of the obser-
vations from the null expectation in common
units of standard deviation. The null expectation
from which Eexp and SDexp are calculated is usu-
ally obtained from null models, that is, by subject-
ing the data to a repeated randomization that
breaks the association among species or sites.
Currently, these null models have been well estab-
lished particularly for binary species associations
in R-mode (Gotelli 2000, Ulrich and Gotelli 2013),
whereas for abundance data (Ulrich and Gotelli
2010) and for beta diversity assessments in Q-
mode, they are still under development and their
merits are partly unclear or debated (Chase et al.
2011, Ulrich et al. 2017, Legendre 2019).

While working on a separate project, I noticed
that several of the classical resemblance indices
for binary data gave surprisingly similar answers
when expressed as Z-scores, although in their
raw form, each of them might have a unique
way of capturing resemblance (Koleff et al.
2003). This led me to a suspicion that that maybe
the actual mathematical formula of resemblance
indices does not matter that much, if at least
some of the important matching components are
in the formula, and as long as the index is
expressed as a Z-score. To test this, and to figure
out which of the components actually really need
to be in a resemblance index, I devised a simula-
tion exercise, as described below and in
Appendix S2. My first aim was to examine how

similar to each other are the existing resemblance
indices when applied to simulations with vary-
ing and known resemblance, and how similar
they are when converted to their Z-score vari-
ants. My second aim was to find out how well
the raw indices reflect the parameter in the simu-
lation that regulated the magnitude of resem-
blance. Finally, I also aimed to identify which of
the four matching components are most impor-
tant for capturing the simulated resemblance,
both in their raw form and as Z-scores.

METHODS

I set this exercise to be in R-mode; that is, it
examined resemblance indices as measures of
between-species associations (Gotelli 2000). I
simulated spatially explicit distributions of pairs
of species as two point patterns (Wiegand and
Moloney 2014), while varying the magnitude of
association between the two species, and while
varying conspecific aggregation and number of
individuals per species. I modeled the between-
species association as being dependent on spatial
distance, and it was controlled by a single
parameter alpha, with negative values for segre-
gation, zero for independence, and positive for
attraction (Appendix S1: Fig. S1, S2). All of this
resulted in 612 unique combinations of simula-
tion parameters. I then aggregated the point pat-
terns to grids of varying grain (resolution), and I
used these to create binary vectors with 0 for
absence and 1 for presence of each species in
each grid cell. Details on the simulation proce-
dure are in Appendix S2.
For each simulated pair of species, I quantified

the observed resemblance Eraw between the two
binary vectors using 74 published indices
(Appendix S1) and 4 matching components abcd.
For all of these indices and matching compo-
nents, I also calculated their Z-scores, which I
did by running 400 realizations of null model
that randomly reshuffled presences within each
binary vector (sim2 algorithm of Gotelli and Elli-
son 2013), irrespectively of the values in the other
vector. Importantly, the locations over which the
presences were reshuffled also included double
zeroes, that is, locations where none of the spe-
cies was originally present, but which were still
part of the spatial domain of the simulations.
These 400 realizations were then used to
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calculate the SDexp and Eexp and the Z-score
using Eq. 1. Further details are in Appendix S2.

I then calculated correlation matrix of Spear-
man rank correlations between each pair of
indices, with one correlation matrix for raw
indices and one for Z-scores; I summarized these
correlation matrices as boxplots and also in a net-
work graph (R package qgraph). I also measured
Spearman rank correlation between each index
(or their Z-scores) and the simulated association
alpha. For all evaluations in this study, I used
absolute values of the rank correlations, since I
was interested in the magnitude, not the direc-
tion of the correlation, and since some indices
represent similarity (attraction), while others rep-
resent dissimilarity (segregation), yet others
reflect both. All code and data used are available
at https://github.com/petrkeil/Z-scores.

RESULTS

Across all of the 74 indices and 4 matching
components, Z-scores were considerably more
similar to each other than were the raw metrics,
as expressed by the between-index pairwise
Spearman correlations (Fig. 1). This is further
obvious when the correlations are visualized in a
network graph (Fig. 2) where almost all Z-scores
aggregate in the middle of the main cluster.
Exceptions to this overall trend are indices 49, 50,
53, 78, and 79 (see Appendix S1 for their exact
definition), all complex indices with little or no
use in ecology (Hub�alek 1982, Rajagopalan and
Robb 2005). Note that from these analyses I omit-
ted indices no. 61, 76, and 77 (Appendix S1) since
they produced too many NAvalues.

None of the indices gave a perfect correlation
with the simulated underlaying association rep-
resented by parameter alpha (Fig. 3), likely
because of the confounding effect of conspecific
aggregation and varying spatial grain. However,
expressing the raw indices as Z-score increased
their median correlation with alpha from 0.69 to
0.79 (Fig. 3), and it dramatically reduced
variation in the performance of the indices, from
the interquartile range of 0.18 to interquantile
range of 0.009 (Fig. 3). Thus, even though differ-
ent indices gave different answers concerning the
magnitude of association between two species,
they gave very similar answers when used as
Z-score.

Another striking result was the performance of
single matching components alone—not only
using them as Z-scores substantially improved
their correlation with alpha (from median of 0.41
to 0.79), but they also gave almost identical
answers (reduced interquartile range of the cor-
relation from 0.35 to 0.001). Thus, each of the
four abcd components sufficiently captures the
underlaying simulated association (Fig. 3). In
Appendix S3, I show why. Surprisingly, this also
includes the number of joint absences d (double
zeroes), a quantity that has been deemed unin-
formative for ecological purposes (Legendre and
Legendre 2012).

DISCUSSION

Majority of resemblance indices gave a
range of values when expressed in their raw
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Fig. 1. Summary of Spearman correlations (their

absolute value) among raw metrics and among
Z-scores, calculated on simulated species associations.
Boxplots summarize the lower triangular part of an
index-by-index correlation matrix. Boxes show 25%,
50%, and 75% quantiles, whiskers show span of the
data but do not go further than 1.5 of the interquartile
range. Omitted are indices no. 61, 76, and 77
(Appendix S1) since they produced too many NA
values.

 ❖ www.esajournals.org 3 November 2019 ❖ Volume 10(11) ❖ Article e02933

KEIL

https://github.com/petrkeil/Z-scores


form, and they varied in their correlation with
each other and with the simulated association.
This is not surprising, since the indices have been
designed to reflect various facets of resemblance.

For instance, C-score (b 9 c) was designed to
specifically capture the magnitude of segrega-
tion between species (negative association),
while togetherness (a 9 d) captures positive

Fig. 2. Representation of Spearman correlations among raw indices (green) and their Z-scores (orange) in a
network graph, produced by R package qgraph. Each point represents an index, and lines between points are
correlations between indices, with thicker and darker lines indicating stronger correlations. The main result here
is that most of the Z-scores unite at the center of the graph, reflecting their stronger pairwise correlations. Index
numbers correspond to indices in Appendix S1. Note that the graphing algorithm does not allow points to over-
lap, sometimes pushing even strongly correlated indices apart.
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association (Ulrich and Gotelli 2013), and yet
Pearson tetrachoric correlation ((a 9 d � b 9 c)/
(((a + b) 9 (c + d) 9 (a + c) 9 (b + d))0.5)) cap-
tures both positive and negative associations in a
single number (Hub�alek 1982). However, most of
the indices converge when expressed as Z-scores
—the Z-scores become strongly correlated with
each other (hence the title) and they also, on aver-
age, better reflect the simulated association than
the raw metrics. In a way, when a null model is
deployed in order to move from the raw similar-
ity index to the Z-score, one actually relaxes the
need for the index to have a clear interpretation,
since that shifts from the index to the null model.
For example, Jaccard index is interpreted as pro-
portional (or percentage) overlap of occurrences
of two species, but it becomes a mere summary
statistic (sensu Wiegand and Moloney 2014)
when contrasted with expectations from a null
model, where the null model now bears all the
information/meaning.

The uncovered convergence and good perfor-
mance of Z-scores is reassuring to the field cur-
rently flooded with beta diversity and

association indices. As long as an index is pre-
sented as a Z-score, it matters little which one is
used—within the classical and most often used
indices (Jaccard, Sorenson, Simpson, C-score),
one can’t really go wrong, and one can even com-
pare Z-scores from different studies, irrespec-
tively of the actual index used, as long as the null
model is the same. Further, there may be
instances when we know the precise ecological
interpretation of what a null model does; in such
case, it might be simpler to rely on the meaning
of the null model, rather than on the meaning of
the metric, since meanings of some metrics might
be complex, or opaque. My results also imply
that indices which include double zeroes (e.g.,
the simple matching coefficient), are a good
option, even though in their raw form they are
heavily biased by any arbitrary addition of joint
absences, for example, due to arbitrary spatial
delineation of the study area. I propose that this
united behavior occurs because each of the
matching components abcd carries equal informa-
tion about the deviation from the null expecta-
tion (Stevens 1938; Appendix S3). This leads me

a

b

c

d

a

b

c

d

Raw index Z−score

Index Matching component Index Matching component 

0.00

0.25

0.50

0.75
| S

pe
ar

m
an

 c
or

re
la

tio
n 

w
ith

 a
lp

ha
 |

Fig. 3. Correlation of resemblance indices with the parameter alpha that determines the magnitude of attrac-
tion (or segregation) of two simulated point patterns. The correlation is measured by absolute value of the Spear-
man rank-rank correlation. Shown are existing published indices for binary data (N = 74; Appendix S1) and the
four matching components a, b, c, and d. Left panel shows raw values of the indices, and right panel shows their
Z-scores.
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to a proposition that any of the matching compo-
nents can be used as a valid index of ecological
resemblance, if Z-scored, which has an alluring
touch of minimalism.

Here, I should add that one reason for the
varying, and slightly inferior, performance (mea-
sured by their correlation with parameter alpha)
of the raw metric could be that the association
could have been obscured by varying numbers
of individuals (Wiegand and Moloney 2014),
varying spatial grain (Ara�ujo and Rozenfeld
2014), and perhaps also by varying conspecific
aggregation. Further, the limited ability of the
raw indices to recover the undelaying association
is also expected since the simulated association is
realistically (Wagner 2003, Wiegand and Molo-
ney 2014) distance-dependent, while the evalu-
ated indices are naively spatially implicit. My
results corroborate that Z-scores and null models
can, at least partially, account for these confound-
ing effects, which is something that has been
known in point pattern analysis (Wiegand and
Moloney 2014) and which has also been appreci-
ated in co-occurrence analysis, for example, in
accounting for the confounding effect of species
richness (Ulrich et al. 2018).

I stress that the generality of my finding criti-
cally depends on the particular null model. For a
two-species situation with binary data, my
results are general, since there really are only
two ways to randomize the presences: Either
they are randomized over all n sites or species
(n = a + b + c + d), or the sites with double zer-
oes (d) are excluded. The latter variant will likely
reduce performance of indices that do include
double zeroes in their formula, but I also struggle
to see a clear biological interpretation of such
null model. However, the problem of null model
selection will become increasingly important,
and complex, once more than two species are
added to the community matrix (Gotelli 2000),
once abundances are used instead of binary
occurrences (Ulrich and Gotelli 2010), and/or
once spatial component is included (Wagner
2003). It remains to be assessed how Z-scores
perform under the wide selection of null models
available for these kinds of data and representing
variety of ecological hypotheses.

Another factor affecting generality of my
results is whether one studies species associa-
tions or beta diversity. I set this study to be in

R-mode; that is, it examined the indices as mea-
sures of between-species associations (R-mode),
and not beta diversity (Q-mode). The reason
was that the null models are better developed
for the R-mode (but see Chase et al. 2011,
Legendre 2019) and it was more straightfor-
ward to simulate spatially explicit two-species
associations than patterns of beta diversity. This
is because of the interpretation of the d compo-
nent: In the case of species associations, d is the
number of sites where none of the two species
has been found, and it is bounded by the finite
(bounded) space. In the case of beta diversity,
however, d is the number of unobserved species
from the species pool, for which the upper
boundary may be elusive. In spite of this, I con-
sider my results to be valid for beta diversity,
given that one can make a reasonable assump-
tion about the size of the species pool, since the
mathematics of the raw beta diversity is identi-
cal to the association metrics, only the indices
are applied to a transposed site-by-species
matrix (Arita 2017).
To conclude, in this paper I have demon-

strated that most Z-scores converge to the same
value, although the original indices may have
different values and meanings. Z-scores also, on
average, improve the ability to capture mean-
ingful association between two species, and I
suggest that they may account for confounding
effects of spatial resolution of the data, uneven
prevalences of the species, or intra-specific spa-
tial aggregation, although this needs to be
explored more thoroughly. I thus argue that
null models and null expectations, perhaps
more than particular indices, should be the cen-
tral focus of future methodological research,
particularly in the R-mode analyses of beta
diversity for which the null models seem to be
underdeveloped.
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