
CONC E P T PA P E R

Spatial scaling of extinction rates: Theory and data reveal
nonlinearity and a major upscaling and downscaling challenge

Petr Keil1 | Henrique M. Pereira1,2,3 | Juliano S. Cabral1,4 |

Jonathan M. Chase1,5 | Felix May1 | Inês S. Martins1 | Marten Winter1

1German Centre for Integrative Biodiversity

Research (iDiv), Halle-Jena-Leipzig, Leipzig,

Germany

2Institute of Biology, Martin Luther

University Halle-Wittenberg, Halle (Saale),

Germany

3C�atedra Infraestruturas de Portugal-

Biodiversidade, CIBIO/InBIO, Universidade

do Porto, Campus Agr�ario de Vair~ao, Vair~ao,

Portugal

4Ecosystem Modeling, Center for

Computational and Theoretical Biology

(CCTB), University of W€urzburg, W€urzburg,

Germany

5Institute of Computer Science, Martin-

Luther University Halle-Wittenberg, Halle

(Saale), Germany

Correspondence

Petr Keil, German Centre for Integrative

Biodiversity Research (iDiv) Halle-Jena-

Leipzig, Deutscher Platz 5e, 04103 Leipzig,

Germany.

Email: pkeil@seznam.cz

Funding information

iDiv, Grant/Award Number: DFG FZT 118

Editor: Allen Hurlbert

Abstract

Aim: Biodiversity loss is a key component of biodiversity change and can impact ecosystem serv-

ices. However, estimation of the loss has focused mostly on per-species extinction rates measured

over a limited number of spatial scales, with little theory linking small-scale extirpations to global

extinctions. Here, we provide such a link by introducing the relationship between area and the

number of extinctions (number of extinctions–area relationship; NxAR) and between area and the

proportion of extinct species (proportion of extinctions–area relationship; PxAR). Unlike static pat-

terns, such as the species–area relationship, NxAR and PxAR represent spatial scaling of a dynamic

process. We show theoretical and empirical forms of these relationships and we discuss their role

in perception and estimation of the current extinction crisis.

Location: U.S.A., Europe, Czech Republic and Barro Colorado Island (Panama).

Time period: 1500–2009.

Major taxa studied: Vascular plants, birds, butterflies and trees.

Methods: We derived the expected forms of NxAR and PxAR from several theoretical frame-

works, including the theory of island biogeography, neutral models and species–area relationships.

We constructed NxAR and PxAR from five empirical datasets collected over a range of spatial and

temporal scales.

Results: Although increasing PxAR is theoretically possible, empirical data generally support a

decreasing PxAR; the proportion of extinct species decreases with area. In contrast, both theory

and data revealed complex relationships between numbers of extinctions and area (NxAR), includ-

ing nonlinear, unimodal and U-shaped relationships, depending on region, taxon and temporal

scale.

Main conclusions: The wealth of forms of NxAR and PxAR explains why biodiversity change

appears scale dependent. Furthermore, the complex scale dependence of NxAR and PxAR means

that global extinctions indicate little about local extirpations, and vice versa. Hence, effort should

be made to understand and report extinction rates as a scale-dependent problem. In this effort,

estimation of scaling relationships such as NxAR and PxAR should be central.
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1 | INTRODUCTION

Biodiversity loss is one of the most serious environmental problems we

face (Cardinale et al., 2012; Pereira, Navarro, & Martins, 2012;

Rockstr€om et al., 2009), and estimates of its rate and magnitude are

required for informed conservation policy. The Aichi target 12 under

the Strategic Plan for Biodiversity 2011–2020 (www.cbd.int/sp/tar-

gets/) aims at preventing extinctions of known threatened species, and

all regional and global assessments of Intergovernmental science-policy

Platform on Biodiversity and Ecosystem Services (IPBES, http://www.

ipbes.net/) are committed to report past, present and future trends of

biodiversity. Given the importance of extinction rates to the process of

biodiversity loss, it is striking that there are major unresolved issues

related to spatial scale and metrics of extinctions.

Global extinction science has primarily focused on estimation of

per-species extinction rates, measured as the number of extinctions

per million species-years, E/MSY (e.g., Barnosky et al., 2011; Proenca &

Pereira, 2013; Pimm et al., 2014). Similar per-species metrics have

been used in island biogeography (e.g., Wu & Vankat, 1995) and meta-

population biology (Hanski, 1991), where they are termed per-species

extinction rate or per-species extinction probability. All of these metrics

are independent of the absolute number of species, which makes them

comparable across epochs, regions and taxa. However, in addition to

per-species rates, absolute counts of extinction events per unit of area

are also of major interest, because they affect species richness, which

is a core quantity of basic biodiversity science (Gaston, 2000), with

links to ecosystem services (Cardinale et al., 2012; Hooper et al., 2005).

Recently, a number of authors have been particularly interested in

understanding how species richness changes through time, with debate

as to whether it is declining at all scales or instead has more variable

trends (Dornelas et al., 2014; Gonzalez et al., 2016; McGill, Dornelas,

Gotelli, & Magurran, 2015; Vellend et al., 2013).

Spatial scale is a fundamental, but still mostly overlooked, aspect

of understanding extinction. Current extinction rates have been esti-

mated at global and continental extents (Alroy, 2015; Barnosky et al.,

2011), which are crucial because they are irreversible. Yet, almost any

global extinction is preceded by a series of local and regional extinc-

tions (known as extirpations). For example, although the Danube

clouded yellow (Colias myrmidone, Esper 1780) still survives in some

parts of Europe, this butterfly was extirpated from the Czech Republic

in 2006, which triggered considerable attention for its implications for

landscape management across the whole continent (Konvicka et al.,

2007). More prominent examples include extirpations of the bison

[Bison bison, Linnaeus 1758 (Isenberg, 2001)] in most parts of North

America, or lion [Panthera leo, Linnaeus 1758 (Riggio et al., 2013)]

across most of Africa; local loss of these keystone species led to direct

impacts on local ecosystem services. Clearly, focusing solely on global

extinctions can underestimate extinctions on smaller scales, and vice

versa; hence, there is a need to assess and understand the current

extinction crisis at multiple spatial scales simultaneously.

Here, we propose a new way of looking at extinction rates to

address the issues of metric and scale of extinction over continuous

space. Specifically, we propose to consider jointly how numbers of

extinctions, NX , and proportion of extinct species, PX , scale with the

area over which they are observed. We first provide theoretical expect-

ations for the scaling of NX and PX . We then demonstrate the scaling

using five empirical datasets covering local, regional and continental

scales. We show that whereas PX mostly decreases with area, NX fol-

lows complex relationships with area. The key finding is that NX in

small areas can be lower, but also higher, than NX in large areas, making

it impossible to obtain the complete picture of the current extinction

crisis from looking at a limited range of spatial scales (e.g., local or

global).

2 | THE CONCEPT OF NxAR AND PxAR

Here, we establish two central concepts of this paper: (a) NxAR, the

relationship between number of extinction events, NX , and the area of

the observation window, A; and (b) PxAR, the relationship between the

proportion of extinct species, PX , and A, where PX5
NX
S , and S is number

of species in A at the beginning of a temporal interval (note that if S50

then NX50 and PX is undefined). In both cases, the area of the obser-

vation window is expanded in a nested way, so that a larger window

always encompasses the smaller one. A window can be placed at any

location within a larger continuous area and can overlap any number of

habitat types (including uninhabitable areas). This makes PxAR and

NxAR fundamentally different from approaches relating extinction

probability to an area of a habitat patch (as in metapopulation ecology;

Hanski & Ovaskainen, 2000) or to temporal change of habitat area

(Kitzes & Harte, 2014). Furthermore, there are often multiple observa-

tion windows of the same (or similar) A representing cells of a grid

(Figure 1a). In such cases, A becomes equivalent to the grid grain or

resolution. When averaged over multiple grid cells or observation win-

dows of a given A, NX and PX become �NX and �PX , and their scaling

with A is �NxAR and �PxAR, which we use to summarize multiple realiza-

tions of NxAR and PxAR.

For the purpose of this paper, we classify an event as extinction

when a species disappears from an observation window (i.e., present at

time 1, but absent at time 2; Figure 1b). If the observation window is

the entire world, such an event becomes a global extinction. When the

species still prevails outside the observation window, an extinction

event inside of the window can also be called an extirpation. Thus, at

the global scale, NX corresponds to the E metrics of Proenca and

Pereira (2013) and Foote (1994), and our PX corresponds to the E
S met-

ric of Proenca and Pereira (2013) and E
D metric of Foote (1994). When

observation windows are cells of a grid with a given grain A, we use

P extð Þ5 AOOlost
Atot

(Supporting Information Appendix S1) for a single-

species probability of extinction in a grid cell with a given A, where

AOOlost is the area of grid cells in which the species went extinct, and

Atot is the area of all grid cells in the entire studied region. Importantly,

�NX5
PStot

i51 P extð Þi where Stot is number of species in the entire region

at time 1, and i identifies each species (Supporting Information Appen-

dix S1). For details and connections between these metrics and/or links

of PxAR and NxAR to scale–area curves (Hartley & Kunin, 2003; Kunin,

1998; Wilson, Thomas, Fox, Roy, & Kunin, 2004), see Supporting
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Information Appendix S1. For a description of how PxAR and NxAR

differ from endemics–area relationships (He & Hubbell, 2011; Keil,

Storch, & Jetz, 2015) and extinction–area relationships (Kitzes & Harte,

2014), see Supporting Information Appendix S2.

Finally, we note that we can speak about extinction rates only

after we express PX and NX (or their means, �NX and �PX ) per unit of

time, or temporal grain (the time interval t between time 1 and time 2;

Figure 1b). Thus, the true rate metrics are NX=t and PX=t, where the lat-

ter corresponds to the widely used E/MSY (Barnosky et al., 2011;

Pimm, Raven, Peterson, Şekercio�glu, & Ehrlich, 2006). However, with t,

we face the non-trivial problem of temporal scaling. It has been shown

that over paleontological time-scales, the means of both NX and PX typ-

ically increase nonlinearly with t (Foote, 1994), whereas the variance of

PX and NX decreases with t (Alroy, 2014; Barnosky et al., 2011; Foote,

1994). The latter happens because extinction events tend to be

clumped in time (Foote, 1994). Albeit important, we do not explicitly

deal with temporal scaling in this paper. In most of our theoretical argu-

ments and comparisons, we avoid the problem by assuming t is con-

stant, and we focus on spatial scaling of NX and PX . In our empirical

evaluations, we either report t alongside PX and NX , or we use NX=t

and PX=t.

3 | THEORETICALLY EXPECTED SHAPES OF
NxAR AND PxAR

We first show what not to expect. In Figure 2, we show that mean

numbers of extinction events, �NX , and the mean proportion of extinct

species, �PX , should not be expected to have a generally increasing or

decreasing relationship with area. There are two scenarios that lead to

different �PxARs and �NxAR. (Figure 2a). In scenario 1, a region loses

two geographically restricted species, and nothing happens to the

widespread species. This leads to �NX being smaller at small grains than

at larger grains, and both �NxAR and �PxAR are increasing. In scenario 2,

there are range contractions of several widespread species, but no spe-

cies is completely lost from the region. This results in high �NX at small

grains, but no extinctions at the larger grain. Here, �NxAR and �PxAR are

decreasing (Figure 2a).

Using a minimalistic example of a single species in Figure 2b, we

show that locally increasing, decreasing or hump-shaped relationships

between A and single species P extð Þ are possible. This can happen, for

example, when a peripheral fragment of a population is lost (see Sup-

porting Information Appendices S1 and S3 for richer set of examples).

We know that �NX5
PStot

i51 P extð Þi (Supporting Information Appendix

S1); hence, nonlinear relationships of P extð Þi with A can simply add up

to nonlinear �NxARs. This confirms that �NxARs should exhibit a rich

variety of functional forms, including decreasing, increasing and unimo-

dal patterns. Unfortunately, this reasoning may not be applicable for

predictions of nonlinear shape of �PxAR, because we have failed to find

a simple and direct link between per-grid cell extinction probability

P extð Þi and the mean proportion of extinct species �PX (see also Sup-

porting Information Appendix S1).

We present yet another line of reasoning that leads to nonlinear

NxAR in Figure 3. Specifically, we show that PxAR and NxAR can be

linked through species–area relationship (SAR), and that even when

PxAR is monotonically decreasing, the NxAR can increase, decrease or

be unimodal. In other words, even if the per-species rate of extinction

is high locally but low regionally, the actual number of extirpations can

be exactly the opposite. This is counterintuitive but easily validated.

Let us assume that mean species richness S at time 1 follows a power-

law SAR (Figure 3a) or any other monotonically increasing function.

FIGURE 1 Extinctions and extirpations have spatial and temporal grain. (a) Our main focus is on extinction rates and numbers as a
function of spatial grain, A (area of observation window), which can be a rectangular grid cell or an irregularly shaped country or continent.
(b) Temporal grain (t) is the length of the interval between time 1 and time 2 over which extinction events (marked by x) are counted
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We move forward to time 2, assuming that each species at each loca-

tion either goes extinct or survives. We can also assume that the PX

decreases with A monotonically, but with varying steepness (repre-

sented by different line types in Figure 3b). In such a system, NxAR is

obtained by multiplication of SAR with PxAR; that is, at each grain, A;

we take the number of species and multiply them by PX to get NX . As a

result, the emerging shapes of NxAR vary from increasing to hump

shaped (Figure 3c), with the possibility of observing monotonically

decreasing NxAR over limited extents of A (Figure 3c).

The above SAR-based reasoning is general and applicable to any

type of biodiversity dynamics, regardless of whether it is in equilibrium

or not, and regardless of the mechanism causing the extinctions. How-

ever, in order to glimpse some mechanistic underpinnings of the extinc-

tion scaling, we also examined the shapes of PxAR and NxAR predicted

by classical dynamic theories. First, we examined three variants of spa-

tially implicit neutral models (Supporting Information Appendix S4): a

closed local community dynamics with no immigration or speciation

(Halley & Iwasa, 2011) a metacommunity model with random fission

speciation and no local communities (Ricklefs, 2006), and a local com-

munity dynamics with immigration (Hubbell, 2001) (Supporting Infor-

mation Appendix S4). These three variants predict increasing,

decreasing or unimodal PxARs and NxARs, depending on how

migration is modelled, how time is scaled and whether we consider

area of local community or area of a metacommunity (Supporting Infor-

mation Appendix S4). Second, both metapopulation ecology (ME; Han-

ski, 2001; Hanski & Ovaskainen, 2000) and the equilibrium theory of

island biogeography (ETIB; MacArthur & Wilson, 1967) assume a

monotonically decreasing PxAR, because larger patches or islands can

host larger populations that are less likely to perish owing to environ-

mental and demographic stochasticity (Lande, 1993). This is also sup-

ported empirically (Diamond, 1984; Hugueny, Movellan, & Belliard,

2011; Quinn & Hastings, 1987). In Supporting Information Appendix

S5, we show that this decreasing PxAR can be plugged into the ETIB to

obtain increasing, decreasing or hump-shaped NxAR, depending on

how exactly immigration scales with area. However, note that ME and

ETIB focus on areas of isolated habitat patches or islands of different

sizes, without subdividing these to smaller spatial units; hence, we

should not always generalize their predictions to mainlands, where area

is a nested observational window.

To summarize, we have demonstrated that shapes of PxAR and

NxAR are sensitive to whether widespread or rare species are affected

by extinction, to whether peripheral or core parts of species distributions

are lost, to the specific form of species–area relationship at time 1, to

spatial scaling of immigration rates and to temporal grain. As a result,

FIGURE 2 Simple scenarios showing the multitude of possible spatial scalings of extinction rates. (a) Two kinds of community dynamics
producing opposite directions of �NxAR and �PxAR in a community that started with three species (indicated by symbol shape and colour) at
time 1. In the first scenario, two rare species go extinct, leading to positive scaling. In the second scenario, none of the species goes
completely extinct, but there are population declines in all species, leading to negative scaling. (b) Demonstration of the possibility of hump-
shaped scaling of P extð Þ with A. Notation: �NX is the mean count of extinctions per grid cell of given spatial grain, A; �PX is a mean per-grid
cell PX , where PX5

NX
S , with S being number of species in a cell at time 1; and P extð Þ is the proportion of grid cells that lost the species in

the total number of grid cells
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both PxAR and NxAR can be increasing, nonlinear or decreasing. Such

behaviour contrasts with ecological patterns such as nested species–area

or endemics–area relationships that can only increase or remain flat.

4 | EMPIRICAL EVALUATION

We focused on mainland terrestrial systems with nested areas (contin-

uous continental areas), mostly because of our own research back-

ground and because there is a well-developed literature on empirical

extinction rates in island-like systems (Diamond, 1984; Hugueny et al.,

2011; Quinn & Hastings, 1987; Tedesco et al., 2013).

4.1 | Data

We used the following five datasets that cover a wide range of geo-

graphical and temporal extents:

1. European butterflies. We extracted data on extinction events and

on the extant species of butterflies (Lepidoptera: Rhopalocera) in

European administrative areas during the last c. 100 years from

Red data book of European butterflies (Van Swaay & Warren,

1999); specifically, we considered species extinct in a given coun-

try if its status in Van Swaay and Warren (1999) Appendix 6 table

was ‘Ex’.

2. European plants. We extracted the same kind of data on extinc-

tions (between AD 1500 and 2009) and extant species of Euro-

pean vascular plants from Winter et al. (2009), available upon

request from M.W. Note that the plant data cover different extent

and administrative units from the butterfly data (Figure 4).

3. U.S. plants. We used data on the extant native species of Plantae

(i.e., ferns, conifers and flowering plants) in 48 states of the U.S.A.

(i.e., excluding Hawaii and Alaska) provided in the Biota of North

America Program’s (BONAP) North American Plant Atlas (Kartesz,

1999). We used data on contemporary (AD 1500–2009) extinc-

tion events also at the level of individual states. This information is

provided by NatureServe (www.natureserve.org) and its network

of Natural Heritage member programmes (NatureServe, 2016).

The data provided by NatureServe are for informational purposes,

and should not be considered a definitive statement on the pres-

ence or absence of biological elements at any given location. Site-

specific projects or activities should be reviewed for potential

environmental impacts with appropriate regulatory agencies.

4. Czech birds. We used presence–absence data of breeding birds

recorded in a regular grid of 11.7 km 3 11.7 km grid cells through-

out the Czech Republic, and covering two temporal periods: 1985–

1989 (�Sťastn�y, Proch�azka, Bejček, & Hudec, 1997), with 56,780

species-per-cell incidences; and 2001–2003 (�Sťastn�y, Bejček, &

Hudec, 2006), with 59,354 species-per-cell incidences. Hence, the

temporal interval between the two periods is c. 14 years.

5. Barro Colorado trees. We used tree data from a 50-ha forest plot

on Barro Colorado Island (BCI), Panama (Condit, 1998; Hubbell

et al., 1999, 2005). For this analysis, we included only trees

with�10 cm diameter at breast height (d.b.h.), and we compared

two temporal snapshots 25 years apart. The results were qualita-

tively similar when the temporal lag between the two snapshots

was 5, 10, 15 and 20 years, and also when we considered all trees

with�1 cm d.b.h.

4.2 | NxAR and PxAR calculation

In the European, U.S. and Czech datasets, we constructed PxAR and

NxAR curves by placing a small circle at a random location within the

geographical extent of the data, then gradually increasing the circle

size. For each circle size, we aggregated spatial units (i.e., European

countries, U.S. states or Czech grid cells) overlapped by the circle. In

the resulting aggregated units, we noted A, PX , NX and S, where A is

the area of the aggregated unit, NX the number of extinction events, S

the number of all species found in the aggregated unit in the first tem-

poral window, and PX5
NX
S . This procedure was repeated 200 times,

each time starting at a different random location of the smallest circle.

We obtained a set of curves for each starting position, which we

FIGURE 3 Spatial scaling of number of extinctions (NX ) derived from a simple species–area relationship (SAR)-based model. (a) SAR, the
relationship between species richness S at time 1 and area A is given a priori; here it is a power law. (b) PxAR, the relationship between
per-species extinction probability PX and A, is also given a priori and is described by three arbitrarily selected monotonically decreasing func-
tions. (c) By multiplying S by PX at a given A, we get a rich variety of scalings of NX , including monotonically decreasing, increasing or hump
shaped. Dashing indicates corresponding PxAR and NxAR curves
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summarized using local regression (LOESS) with smoothing span of 0.3;

the resulting smoothed average represents �NX and �PX . In the BCI forest

plot, we overlaid the entire plot area with rectangular grids of increas-

ing resolution, from 20 m 3 20 m up the entire 50 ha plot. At each grid

resolution, we counted, for each grid cell, the number of species (S0) in

the 1985 census, checked which of these species were present in the

2010 census (S1) and calculated PX5 S02S1ð Þ=S0 and NX5S02S1. We

then calculated average (6 SD), �NX and �PX across all grid cells of a

given grain.

Using the procedures described above, we obtained a smoothed

average �NX and �PX for each A in each of the five datasets. However,

the datasets vary widely in their temporal grain, t. Hence, we also cal-

culated spatial scaling of the �PX=t and �NX=t metrics derived from the

smoothed averages, with t expressed as years between time 1 and 2.

In case of the U.S. and European datasets, t is only a rough calculation,

because the times of extinctions are not precisely known in most

cases.

4.3 | Results

In the five empirical datasets, �PX mostly decreases with area, A, of the

observation window (Figures 4a,c,e and 5a,c). This contrasts with �NX ,

FIGURE 4 Empirical spatial scaling of (a, c, e) proportion of extinct species PX and (b, d, f) number of extinctions NX of (a, b) European
butterflies, (c, d) European vascular plants and (e, f) U.S. vascular plants. Each grey line was obtained by placing (200 times) a small circle at
a random location within the region, then gradually increasing the circle size up to the size of the whole region, counting the number of
extinction events within the countries or states falling in the circle. Continuous black lines are LOESS regressions with a smoothing span of
0.3, and represent �PX and �NX

KEIL ET AL. | 7



which scales with A in a variety of ways. The two datasets on European

plants and butterflies produced highly divergent �NxARs (Figure 4b,d).

European butterflies (Figure 4b) have a hump-shaped �NxAR, with high

numbers of extirpations at intermediate scales, but only a single pan-

continental extinction. In contrast, European vascular plants (Figure 4d)

have an upward-accelerating �NxAR, with highest rates of extinction at

the largest scale. The �NxAR of the U.S. plants is similar to that of the

European plants (Figure 4f), showing a clear upward acceleration at

larger areas. In these continental datasets, we can explain the observed

extinction scaling with range dynamics of rare and widespread species.

The observed decrease of �NX with A at large scales in European butter-

flies is likely to reflect range contractions, but not complete extinctions,

of widespread species (e.g., as in Figure 2a). This is the opposite of the

observed increase of �NX with A at large scales in European and U.S.

plants, which is more likely to reflect complete losses of small-ranged

species (Figure 2a). Importantly, these disparate directions of �NxAR are

perfectly reconcilable with the decreasing �PxAR in all of these datasets,

as we have described in the SAR-based model (Figure 3).

We found decreasing �NxAR in Czech birds (Figure 5b). Here, we

note that the high values of NX at small scales can be a result of under-

sampled grid cells (see Section 4.4 below). On the even smaller scale of

the 50-ha BCI forest plot (Figure 5d), the �NxAR sharply increases at

the finest scale and is humped at larger scales, unveiling the possibility

of multi-modal �NxARs. Our observations of decreasing �PxAR and

increasing �NxAR at the local scale of the BCI plot are in line with pre-

dictions of the classical neutral model of Hubbell (2001) (Supporting

Information Appendix S4). In both cases, �NX approaches zero as A

approaches zero, which stems from the trivial fact that the limited

number of individuals in small areas can belong to only a limited num-

ber of species. Interestingly, as A increases and approaches the size of

the BCI plot, both the neutral model and the empirical BCI data reveal

a flat phase of the �NxAR; we suggest that this is because the strong

limiting effect of the small number of individuals no longer applies

above a certain A.

When smoothed averages of �PX , �NX , �PX=t and �NX=t are simultane-

ously plotted as a function of A (Figure 6), no clear overall pattern

emerges (or more precisely, our data are insufficient to reveal a clear

pattern, if there is one). Figure 6 also shows that when t is considered

(Figure 6c,d), the relative position of curves from different systems

changes compared with raw �PxAR and �NxAR. What remains robust to

the rescaling, however, are the high extinction rates in BCI trees and

Czech birds, which are also datasets with the shortest t.

FIGURE 5 Empirical spatial scaling of (a, c) proportion of extinct species PX and (b, d) number of extinctions NX in a country-wide and a
local dataset. (a, b) Atlas data on birds of Czech Republic. Each grey line was obtained by placing (200 times) a small circle at a random loca-
tion within the Czech Republic, then gradually increasing the circle size, counting numbers of extinctions in the atlas cells overlapping the
circle. Continuous black lines are local regressions (LOESS, span50.3) and represent �PX and �NX . High values of PX and NX in some small
areas are likely to be caused by undersampling. (c, d) Data on trees with diameter at breast height (d.b.h.) � 10 cm in the 50-ha Barro Colo-
rado Island (BCI) forest plot calculated over a 25-year lag. Continuous black lines are means and represent �PX and �NX , and dashed lines are
standard deviations calculated over different spatial locations of the observation window
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4.4 | Limitations

Our selection of five empirical datasets revealed critical data limita-

tions. First, we clearly need more empirical scaling curves from more

scales, regions and taxa in order to be able to reject firmly or establish

any empirical generality. Second, we should expect temporal survey

data with continuous spatial coverage and grains between

1 km 3 1 km and 10 km 3 10 km to be rare (Beck et al., 2012; Jetz,

McPherson, & Guralnick, 2012); we can already get a notion of this gap

in Figure 6. Survey data from these grains also tend to suffer from false

negatives (Hurlbert & Jetz, 2007), which can falsely elevate extinction

rates. This may have generated the high extinction rates observed at

the smallest grain of the Czech bird dataset. Here, we see an opportu-

nity to extend imperfect detectability occupancy models (K�ery & Royle,

2015; Royle & Dorazio, 2008) to the problem of estimation of extinc-

tion rates. Third, species richness depends not only on area, but also on

the shape of the area (Kunin, 1997). This might have added some noise

to PX and NX calculated in irregularly shaped countries and states.

Finally, the effect of temporal grain t on extinction rates cannot be

overstated (Figures 1b and 6c,d; Alroy, 2014; Barnosky et al., 2011;

Foote, 1994). Although we have formulated our theoretical arguments

to work for any t, our empirical datasets varied substantially in t. More-

over, datasets with the shortest t (BCI trees and Czech birds) also

exhibited high per-species extinction rates (i.e., temporal and spatial

grains were collinear). We attempted to account for differences in t by

using �PX=t and �NX=t, which revealed that BCI trees and Czech birds

have disproportionally higher extinction rates than the continental

datasets. This can be caused by rapid species temporal turnover at

small spatial grains, or by issues of �PX=t and �NX=t standardizations,

which assume a time-homogeneous extinction risk (Foote, 1994).

5 | DISCUSSION

5.1 | Extinction crisis as a grain-dependent problem

Our most important result is the set of counterexamples. Based on sim-

ple theoretical arguments and five empirical datasets, we should not

expect extinction rates to follow a monotonic relationship with area of

observational window (spatial and temporal grains). Instead, local rates

can be similar, lower or higher than global rates. Thus, by solely focus-

ing on global extinctions, we might miss either that not much is hap-

pening at small grains or that there are drastic losses at the small

grains. Moreover, even nonlinear relationships are possible, with rates

of species loss highest (concave curve) or lowest (convex curve) at

intermediate grains. This complex behaviour is a warning to anyone

reporting contemporary extinction rates (Alroy, 2015; Pimm & Raven,

2000; Pimm et al., 2006, 2014) or operating with terms such as ‘sixth

mass extinction’ (Barnosky et al., 2011; Ceballos et al., 2015; Kolbert,

FIGURE 6 Empirical spatial scaling of means of four metrics of extinction rates derived from five datasets. The lines in (a) and (b) are
smoothed averages extracted from Figures 4 and 5. In panels (c) and (d), the �PX and �NX are divided by the length of temporal interval t (in

years), so that the rates represent �PX or �NX per year
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2014; Proenca & Pereira, 2013; Wake & Vredenburg, 2008). Our

results reveal that these phenomena are grain dependent in a more

pronounced and potentially less general way than static patterns of

diversity. This is further complicated by the fact that per-species

extinction rates and numbers of extinctions potentially differ in their

relationship with area. For example, per-species extinction rate may

decrease with area, whereas numbers of extinctions may increase with

area in exactly the same taxon and region. Hence, any study reporting

extinction rates at a single grain may fail to capture extinction dynamics

fully by not considering those occurring at other grains. To provide a

complete picture, local, regional and global extinctions should be esti-

mated and reported simultaneously, preferably using multiple extinc-

tion metrics. The scaling curves we have developed offer a

straightforward way to summarize and report multi-scale extinction

rates.

5.2 | Upscaling, downscaling and interpolation of

extinction rates

The nonlinear behaviour of PxAR and NxAR implies that a simple inter-

polation of extinction rates between grains should be done with cau-

tion, if at all. The same applies for an extrapolation of extinction rates

at grains for which we have limited data (He & Hubbell, 2011; Pimm

et al., 2014), the so-called upscaling and downscaling. Given the rich-

ness of possible NxAR shapes, we warn that estimating the magnitude

of global extinction crisis from local species loss will be a major chal-

lenge. Likewise, numbers of local extinctions will be tricky to predict

from global or continental extinction numbers. In both cases, we sug-

gest that extra information is necessary on spatial scaling of the drivers

of extinction (e.g., on spatial scaling of habitat dynamics or spatial scal-

ing of intensity of extinction debts), on the specific distributions of spe-

cies within the studied area and on their theoretical links to NxAR (e.g.,

as provided in Supporting Information Appendices S1 and S2).

An alternative approach could be to extrapolate PxAR, because it

was mostly decreasing in our five datasets. If there is broad empirical

support for an exact form of PxAR, then it should be possible to com-

bine it with a species–area relationship (Figure 3) derived from the cur-

rent global distributional information on some taxa [i.e., the

International Union for Conservation of Nature (IUCN) range maps] to

extrapolate extinction counts more reliably to grains that are coarser or

finer than the grain of the extinction data. This can be a viable alterna-

tive to the recent approaches that predict extinction numbers solely

from habitat loss (He & Hubbell, 2011; Keil, Storch, & Jetz, 2015;

Martins & Pereira, 2017; Pereira & Daily, 2006; Pimm & Raven, 2000).

Furthermore, a predictable PxAR can be instrumental in statistical mod-

els that link patterns of biodiversity with environmental drivers at mul-

tiple spatial scales (Keil & Jetz, 2013; Keil, Belmaker, Wilson, Unitt, &

Jetz, 2013; McInerny & Purves, 2011).

5.3 | Grain-dependent biodiversity change

The uncovered wealth of possible relationships of extinction rates with

area can also reconcile the reported lack of biodiversity change, on

average, at local grains (Dornelas et al., 2014; Vellend et al., 2013) with

reported losses at the global extent (Alroy, 2015; Barnosky et al.,

2011). The important lesson here is that there is no need to invoke

species gains in order to explain a scale-dependent biodiversity loss, as

suggested by Isbell et al. (2017); NxAR alone is sufficient to cause

scale-dependent biodiversity dynamics (i.e., little change locally, but

pronounced losses globally). However, we are also aware that for a

complete picture of grain-dependent biodiversity change one also

needs to know the spatial scaling of species gains (Jackson & Sax,

2010), and consequently, also species temporal turnover (combined

losses and gains through time; McGill et al., 2015).

5.4 | Island versus mainland systems

We have shown that, in theory, per-species extinction rate can increase

with area. How can a species be more likely to go extinct in a large

area than in small one, given the classical view that larger areas host

larger populations that are less susceptible to extinction (Diamond,

1984; Hanski, 2001; Lande, 1993; MacArthur & Wilson, 1967; Quinn

& Hastings, 1987)? Our take is that the classical view is based on non-

nested systems of islands or habitat patches, whereas here we operate

over continuous ‘mainland’ areas with nested observational units [see

Scheiner (2003) for treatment of the issue in the context of static

SARs]. In nested systems, we can imagine a remote habitat patch or

population occupying a small area at the periphery of a larger region

(Figure 1b). Loss of such small populations can lead to complete extinc-

tion in the region, but may not contribute to the extinction rates in the

majority of local communities. However, we note that in our empirical

analyses, we still detected mostly decreasing PxARs, suggesting that it

may be the prevalent form in mainland systems.

At the same time, we call for a more detailed theoretical and

empirical comparison of the nested mainland and non-nested island

systems. It is well known that island and mainland systems differ in

their static scaling patterns of biodiversity (e.g., SARs), but the causes

of such discrepancies remain controversial (Triantis, Guilhaumon, &

Whittaker, 2012; Whittaker, Willis, & Field, 2001), and we suspect that

it will be similarly challenging to explain fully the differences between

island and mainland scalings of extinction rates.

5.5 | Outlook

Based on our results, we envision the following future research

avenues:

1. To contribute to a more general agenda of dynamic macroecology,

spatial scaling of extinctions should inspire a complementary

approach focusing on scaling of species gains, which includes both

immigration (invasion) and speciation.

2. Further theoretical insights into the scaling of extinctions can be

obtained from spatially explicit neutral models (May, Huth, & Wie-

gand, 2015; Rosindell & Cornell, 2007) and from mechanistic simu-

lation models (Cabral, Valente, & Hartig, 2017).
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3. Spatial and temporal scaling of extinctions should be more closely

integrated. Although paleontology has already seen theoretical

and empirical evaluation of the role of t on global extinctions in

the deep time (Alroy, 2014; Barnosky et al., 2011; Foote, 1994),

we lack this at local grains and short t intervals. We suggest that

survival analysis (Kleinbaum & Klein, 2005) could offer specific

mathematical tools for short-term scaling of extinction rates.

4. More empirical datasets should be brought together to establish

potential empirical generality of the scaling patterns. A grander

task is then to estimate not only how fast species are lost at par-

ticular grains, but also where those losses occur. In other words,

the grids that we introduced in Figure 1a should be populated

with site- and scale-specific estimates of extinction rates.
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