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Abstract8

Probability (P ) of binomial event is a commonly estimated quantity in ecol-9

ogy. Recently, interest has moved to estimation and communication of the10

associated uncertainty about the estimates of P . Here I use the principle11

of maximum entropy to introduce truncated exponential probability density12

function f(P ) on a closed interval [0,1] that gives expectation of the uncer-13

tainty, given that the only information we have is a single-number estimate14

Psingle, which I assume to represent mean µ of an unknown probability density15

distribution of P . This expectation puts an upper bound on the maximum16

uncertainty about P . I also present the associated cumulative distribution17

function, quantile function, and random number generator. I demonstrate18

the MaxEnt f(P ) on a species distribution model predicting probability of a19

species’ occurrence on a geographic map. The MaxEnt f(P ) presented here20
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can be used to make conservative probabilistic statements about probability21

statements, and it can be used as an alternative to beta distribution, and as22

the least informative prior distribution of P in Bayesian modelling.23

24

Keywords: Cumulative distribution function, exponential, MaxEnt, max-25

imum likelihood, MCMC, species distribution model, quantile function.26

Introduction27

Ecologists are often interested in probability P of binomial event, where the28

event is, for instance, presence of a species, colonization or extinction event,29

or survival of an individual. The P is usually estimated as a parameter30

of binomial probability density function in statistical models. Examples of31

such models popular in ecology are generalized linear models for binomial32

or proportion data [17, 3], or more complex hierarchical models that also33

incorporate (or estimate) probability of detection of the event [4, 21].34

With the upsurge of Bayesian modelling ecologists have started to ac-35

knowledge the uncertainty about parameter estimates, where the uncer-36

tainty is expressed as probability density of the parameter values. If P is37

the estimated parameter, then it can also be assigned its own probability38

density. This density is usually estimated as posterior conditional density39

p(P |data,model) by Markov Chain Monte Carlo (MCMC) [19] or by Laplace40

approximation [22] algorithms.41

In many cases the full posterior probability density of P is not available,42

e.g. when we fit the model by likelihood maximization, and all we have is a43

single number representing P , which I will hereafter call Psingle. Sometimes44

Psingle actually does not come from a formal model at all, or the model that45

produced Psingle is unknown, incomprehensible, or Psingle is an average com-46

ing from an ensemble of models [2]. For example, while reading a scientific47

paper, one can encounter a statement that “we estimated the probability of48

the species being present at the locality to be 0.67”, and no other information49
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is provided on how confident are the authors about such claim. In my field,50

which is geographical ecology, probabilities of a species occurrence are often51

mapped to geographical space, conditional on suitable climatic conditions. It52

is very rare to see maps of uncertainty about the estimated probabilities (but53

see [10, 7]). Yet it would perhaps be useful to have a way to associate Psingle54

with some magnitude of uncertainty, or to bound the possible magnitude55

uncertainty, even when all we have is just the Psingle.56

In this paper I propose that the Psingle can be assumed to represent mean57

µ of an unknown probability density function f(P ), and I leave the judgement58

about appropriateness of this assumption solely up to the reader – yet, this59

assumption is at the very foundation of my reasoning, and any practical60

application of the methods presented here will depend on the assumption. I61

propose that f(P ) has to satisfy the following conditions (constraints): (i)62

f(P ) is continuous (ii) µ is known, (iii) possible values of P are bounded63

between 0 and 1, and (iv)
∫ 1

0
f(P ) dP = 1 (the normalization condition).64

The probability density function f(P ) that satisfies these constraints, and at65

the same time represents our ignorance about all of the other properties of66

f(P ), is the f(P ) that gives the maximum value of entropy (H) [8] defined67

as:68

H =

∫ 1

0

f(P ) log f(P ) dP (1)

In the next section I introduce such function, and I call it MaxEnt f(P ).69

I will show that it has properties that enable to put an upper bound on the70

magnitude of uncertainty about P , given that we only have Psingle.71

Complete raw data and codes (with detailed comments) used for this72

study are provided in Supplements S1 and S2. The latter also provides all of73

the raw figures and the LATEX code of the manuscript.74
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Figure 1: Shapes of the MaxEnt f(P ) given by eq. 4 with different values of parameter
α. If α = 0 then f(P ) = 1 everywhere between 0 and 1 (uniform distribution); otherwise
the function is a truncated exponential.
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Figure 2: Relationships between mean probability density µ and entropy H of beta and
triangular probability density functions. Solid black lines are the MaxEnt f(P ) described
by eq. 4. Grey dots are 1000 beta (left) and triangular (right) density functions with
randomly simulated parameter combinations. In the case of beta f(P ) the two shape
parameters were drawn independently from Uniform(0.1, 1). The triangular f(P ) has
parameters A, B and C, where A and B define the interval at which fp(P ) > 0, and C is
the peak of f(P ). A and B were chosen from Uniform(0, 1) and C from Uniform(A,B).
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The MaxEnt f(P )75

Conrad [5] provides a proof that the general form of maximum entropy prob-76

ability density function f(x) for any x on the interval [a, b] with mean µ is a77

truncated exponential function:78

f(x) =
αeαx

eαb − eαa
, x ∈ [a, b] (2)

where the mean µ is given by79

µ =

∫ b
a
αPeαP dP

eαb − eαa
=
beαb − aeαa

eαb − eαa
− 1

α
. (3)

As probability is defined between 0 and 1, I simplified eqs. 2 and 3 by80

setting a = 0 and b = 1 in order to get the f(P ). When using P instead of81

x, we get:82

f(P ) =
αeαP

eα − 1
, P ∈ [0, 1] (4)

and83

µ =
eα

eα − 1
− 1

α
. (5)

The function in eq. 4 is the MaxEnt f(P ). Fig. 1 illustrates how the84

shape of f(P ) varies with parameter α. The value of α associated with a85

given value of µ can be found using eq. 5 and numerical optimization (see86

the Supplement S1). I propose that −700 < α < 700 or 0.001 < P < 0.999 is87

a reasonable range for applied ecological purposes; more extreme values only88

complicate the optimization. Fig. 2 shows how the entropy of f(P ) compares89

with entropies of beta and triangular probability density functions. It is clear90

that, contrary to some opinions [1], our maximum entropy f(P ) satisfying91

the µ, a = 0 and b = 1 constraints is not beta distribution (Fig. 2).92
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I derived the cumulative distribution function F (p < P ) to be:93

F (p < P ) =

∫ P

0

f(π → p) dπ =
eαP − 1

eα − 1
. (6)

I was unable to come up with a closed-form solution of the inverse of94

F (p < P ), which is the quantile function (F−) necessary for the estimation of95

the quantiles (i.e. uncertainty) about P , given µ. Hence, I have calculated the96

inverse numerically (see the Supplement S1). Finally, to generate a random97

number P ∗ from f(P ) we can use the inverse transform sampling: P ∗ =98

F−(U) where U ∼ Uniform(0, 1).99

I provide R [20] code for the probability density function, cumulative100

distribution function, quantile function, random number generator and the101

procedures to switch between α and µ in the Supplements S1, and a more102

detailed version in Supplement S2.103

Uncertainty from MaxEnt f(P )104

In ecology, uncertainty about estimates of P has been expressed in a vari-105

ety of ways. The classical measure of uncertainty is the span of the 95%106

confidence interval [6, 9]; Newcombe [18] reviews several ways to calculate107

it for proportions between 0 and 1. Alternatives are standard deviation of108

posterior density [21, 12] classification of uncertainty into classes [15], or109

weighted indices of uncertainty [10]. Marcot [16] reviews some other uncer-110

tainty measures applicable for posterior p(P ) in Bayesian modelling such as111

95% credible interval width, posterior probability certainty index or certainty112

envelope.113

In this paper use the word uncertainty to refer an to an inter-quantile114

range (or span) of (1) posterior density of samples coming from MCMC sam-115

pling, or (2) probability density function MaxEnt f(P ) (Figs. 3, 5, 6), where116

the latter is calculated by the quantile function provided in the Supplements117

S1 and S2. Although these two things are not equivalent, they relate to the118
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Figure 3: Relationship between the inter-quantile range and mean µ of the MaxEnt
f(P ) given by eq. 4. Inter-quantile range is a commonly used measure of uncertainty in
parameter estimates in statistical ecology.

same idea (sensu Plato) of uncertainty.119

The MaxEnt f(P ) gives a hump shaped relationship between uncertainty120

(the inter-quantile range) and µ. The range is very broad for any µ ≈121

0.5, but it quickly decreases as µ approaches 0 or 1. This has fundamental122

implications: it means that, under the assumption that Psingle = µ, any123

reported Psingle > 0.85 or Psingle < 0.15 automatically brings low1 uncertainty124

about the P value. In other words, it is impossible to say that something125

has high (or low) probability, and at the same time be uncertain about such126

statement; in contrast, statement that Psingle ≈ 0.5 allows for uncertainty.127
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Figure 4: Geographic distribution of a predictor X, probability P , and the binary out-
comes O. The sigmoidal function describes the relationship between X and P (eq. 7).
For exact geographic coordinates of the maps see Fig. 6.

Example: MaxEnt f(P ) in species distribu-128

tion modelling129

To show how MaxEnt f(P ) could be used in ecological modelling I created130

a dataset consisting of a predictor vector X, which is standardized mean131

annual temperature extracted from [11], and aggregated over 5× 5 km grid132

in the Czech Republic (Fig. 4). The predictor X consists of 9943 grid cells133

(elements) indexed by integer i where i ∈ [1, 9943]. I modelled the true134

probability of species occurrence Pi in each grid cell i as a deterministic135

sigmoidal function of Xi:136

Pi =
1

1 + e−(β0+β1Xi)
(7)

1‘Low’ and ‘high’ are subjective terms, and depend on arbitrarily selected reference,
such as a level of significance (α). They should be understood in a relative sense.
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Figure 5: Relationship between predictor X and probability of species’ occurrence P ,
where the dashed line is the “true” relationship (eq. 7), the solid line is the µ estimated by
MCMC sampling, dark grey area is a 95% credible interval of µ coming from the MCMC
sampling, and light grey area is the 95% inter-quantile range estimated by MaxEnt f(P ).
The same information is visualized in Fig. 6 in a spatially-explicit way.

I set β0 = −2 and β1 = −1.2. Further, I modelled the actual realized137

occurrences Oi of the species as a Bernoulli-distributed random variable:138

Oi ∼ Bernoulli(Pi). (8)

Figure 4 shows the geographical distribution of the predictor X, the prob-139

ability of occurrence P , and the outcomes O in each grid cell i.140

I then randomly sampled 200 grid cells in the map, assuming that this141

sample represents a typical ecological data of predictor Xi and response Oi,142

where i ∈ [1, 200]. I did this sub-sampling in order to invoke some extra143

uncertainty about P caused by the small sample size. I then used these data144

and eqs. 7 and 8 to estimate posterior probability densities of β0, β1 and145

Pi. I used Markov Chain Monte Carlo (MCMC) sampler in JAGS [19](3146

chains, 2000 iterations as burn-in, 2000 samples for inference in each chain)147

to numerically estimate the full posteriors. I estimated µi as the mean of the148

posterior distribution in each grid cell i, together with 95% MCMC quantiles149
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Figure 6: Estimated probabilities of occurrence of a species (colour gradient), together
with the uncertainty about the probabilities (transparency gradient). The three maps
show the same information as Fig. 5, but in a spatially-explicit way. Panel (a) is µ
estimated by MCMC, with zero uncertainty. Panel (b) shows µ values together with the
uncertainty about P , which is the 95% credible interval of P estimated by MCMC. Panel
(c) shows µ together with the MaxEnt uncertainty, which is MaxEnt 95% inter-quantile
range given by f(P ).
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of the density of P . Finally, I used the MaxEnt f(P ) and the estimated µi150

values to calculate 95% MaxEnt quantiles.151

The difference between the MCMC 95% quantiles and 95% MaxEnt quan-152

tiles is illustrated in Figure 5. The range between the MCMC quantiles (dark153

grey) is much narrower than the range between the MaxEnt quantiles – the154

reason is that the MCMC posterior distributions of P are constrained by the155

information (the signal) in the data, whilst the MaxEnt quantiles are only156

constrained by µ.157

Visualizing uncertainty in two-dimensional maps has always been a chal-158

lenge. Here I have chosen the solution of Golding [7] who mapped the es-159

timates of P as a colour gradient, while he expressed the uncertainty as160

saturation of the colour. While this may be visually confusing when two un-161

bounded continuous variables are mapped, it works well with two bounded162

qualities on the [0, 1] interval, where colour saturation (or transparency) is a163

visual metaphor for uncertainty.164

Putting both µ and the uncertainty on a map (Fig. 6) we can see that165

the MaxEnt f(P ) eliminated all of the intermediate colours (orange, yellow166

and green), retaining only the extremes close to 0 and 1. Hence, it effectively167

divided the map into three classes of model predictions: Species highly likely168

to be present (red), species highly unlikely to be present (blue), and areas169

where any probabilistic statement about the species presence is uncertain170

(white). This classification can be useful in situations when we want to be171

really conservative and careful in our inference. Also, it can serve as a basis172

for development of new probability thresholding techniques [14].173

General utility of the MaxEnt f(P )174

I have shown that, given only Psingle and the assumption that Psingle = µ,175

our maximum uncertainty about the probability density of P is bounded and176

decreasing as µ approaches 0 or 1. If we assume that a Psingle reported in sci-177

entific literature represents µ, then we can make statements about the latent178
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distribution f(P ), even under total ignorance about anything but Psingle.179

Specifically:180

• We can use f(P ) to calculate the 95% quantiles (credible intervals)181

of P , given Psingle = µ. For example, we can encounter a statement182

that “probability of the species being present at a given locality on our183

map is 0.87”. This information is sufficient to calculate the MaxEnt184

95% quantiles, which are 0.521 and 0.997 for Psingle = 0.87. These185

give the most conservative span of 95% credible interval of P . This186

is the maximum uncertainty we are able to get, given the assumptions187

above, and hence any other extra information that we will bring into the188

estimation of probability density of P will only reduce the uncertainty.189

• We can use f(P ) to make conservative probabilistic statements about190

probabilistic statements, and we can also set arbitrary probability thresh-191

old. Using the example above, we can state that “the true probability192

of the species’ presence at the locality is higher than 0.5” and, given193

Psingle = µ = 0.87, the probability of such statement being false is194

smaller than 0.021 (eq. 6).195

• The span of 95% quantiles of MaxEnt f(P ) is very broad for any µ ≈196

0.5, but it quickly decreases as µ approaches 0 or 1. Hence, any reported197

Psingle > 0.85 or Psingle < 0.15 automatically implies relatively low198

uncertainty about a statement – probability cannot be high (or low)199

and uncertain at the same time.200

• Perhaps most importantly, the f(P ) can be used as the least informa-201

tive prior distribution for probability in every instance where we can202

reasonably assume that Psingle = µ. Johnson ([13], p. 236) argues that203

there is a poor theoretical basis for using beta distribution is the best204

and “natural” non-informative prior distribution of P . He then cites205

number of studies that attempted to find the least informative combi-206

nations of the two parameters of beta distribution. Interestingly, none207
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of the authors steps out of the realm of beta distribution. Here I show208

(Fig. 2) that beta is definitely not the least informative distribution209

when its mean is known (µ); in such situation the MaxEnt f(P ) can210

be used as the un-informative prior.211

Loose ends212

In practice, the MaxEnt f(P ) can be excessively broad. However, if Psingle213

represents an estimate, then there is probably sufficient information that the214

distribution will be unimodal about the estimate. This can potentially be215

incorporated as another constraint in the derivation of the MaxEnt density216

function, and will likely lead to lower uncertainty about P , and to improved217

applicability of the approach.218

Also, what remains to be thought through is: Can we estimate the un-219

certainty about the estimate of uncertainty of P? Or: can we estimate the220

uncertainty about the estimate of uncertainty about the estimate of uncer-221

tainty of P? The approach presented here can only be relied on if the ‘nested’222

uncertainties converge to a point.223
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