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ABSTRACT

Aim We provide a step-by-step demonstration of how a map of species’ detec-

tions at continental extent can be downscaled to a fine-grain map of occurrence

probabilities using a two-scale hierarchical Bayesian modelling (HBM). The

method requires fine-grain environmental data, but it does not require fine-grain

data on species detections. We demonstrate how it can incorporate spatial auto-

correlation (SAC) and informative priors based on known habitat preferences,

and how it can provide maps of uncertainty about the downscaled predictions.

Location USA.

Methods We used range map and point record data on the distribution of

American three-toed woodpecker (Picoides dorsalis, Baird 1858) to produce a

reliable coarse-grain (160 km 9 160 km) map of the species’ presences and

absences. We developed an HBM combining coarse-grain information with

fine-grain (20 km 9 20 km) environmental data to predict probabilities of

occurrence at the fine grain together with 95% prediction intervals. The model

incorporated SAC in the form of conditional autoregressive (CAR) random

effects. It also incorporated prior knowledge on habitat preferences in the form

of prior distribution of parameters. We evaluated the predictions using 751

well-surveyed fine-grain cells.

Results Our HBM produced reliable fine-grain probabilities of occurrence that

matched the detections and non-detections in the 751 validation cells well (Nage-

lkerke’s R2 = 0.69, AUC = 0.93). By mapping the uncertainty in the downscaled

predictions, we identified areas of low uncertainty and high occurrence probabil-

ity, as well as large areas of high prediction uncertainty. Mapping the autocorrela-

tion term enabled to identify areas of likely spurious observations.

Main conclusions We demonstrate how hierarchical downscaling enables esti-

mation of species distributions at grains finer than the grain of the original

data. The approach can integrate various types of information on distribution

and biology in a single statistical framework, and it enables propagating and

mapping prediction uncertainty. Yet there are also computational challenges for

large datasets.

Keywords

Cross-scale, dispersal limitation, maps of uncertainty, multigrain, niche model-

ling, small area estimation, species distribution modelling.

INTRODUCTION

Knowledge about geographical distribution of species is fun-

damental for both basic and applied ecology. Ideally, species’

distributions are captured in maps with as much detail as

possible (i.e. at high resolution, or fine grain). In reality, it is

impossible to survey for all the species at all locations in the

area of interest. Most large-scale data on species distributions

do not come from rigorous or complete sampling, and they

typically contain high rates of false non-detections (e.g. in
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case of point records; Fig. 1) or false detections (such as

expert-drawn range maps; Fig. 1) and other kinds of bias

(Graham & Hijmans, 2006; McPherson & Jetz, 2007; Beale &

Lennon, 2012; Jetz et al., 2012).

The common practice to work with biased point record

data is to use presence-only or presence-‘pseudoabsence’ spe-

cies-distribution modelling (SDM; Fig. 1; Phillips et al.,

2009; Peterson et al., 2011). Although these are useful tools

to create preliminary maps of habitat suitability for a species,

it is not always straightforward to interpret these maps as

they do not show actual probabilities of occurrence (Yackulic

et al., 2012). For example, the interpretation of the MaxEnt’s

habitat suitability index is a debated issue (Phillips, 2008),

and the results are sensitive to the ‘pseudoabsence’ selection

algorithm (Lobo et al., 2010; Barbet-Massin et al., 2012).

Thus, it is often necessary to convert the suitability maps

into binary presences–absences using an arbitrary threshold

(Liu et al., 2005), and it is difficult to map uncertainty about

the predictions (Rocchini et al., 2011). This constrains their

application beyond exploratory analysis (Yackulic et al.,

2012).

In contrast, with reliable data on presences and absences,

or with knowledge about detection probability of a species,

SDMs become a powerful statistical tools that model actual

probabilities of occurrence (or ‘occupancy’ in some circles;

Guisan et al., 2002; MacKenzie et al., 2002, 2006; Peterson

et al., 2011; K�ery et al., 2013) and uncertainty about the pre-

dictions (using prediction intervals; Geisser, 1993). An addi-

tional advantage of such probabilities is that they do not

need to be arbitrarily thresholded into binary presences–

absences for further ecological applications (Storch et al.,

2003; �Sizling & Storch, 2004; MacKenzie et al., 2006).

Finally, parametric presence–absence SDMs can be used for

formal statistical inference, hypotheses testing and estimation

of uncertainty about model parameters (using confidence or

credible intervals).

Some data on species distributions that cover large contin-

uous geographical areas are reasonably accurate for
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(multi-grain presence-absence 
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(single-grain detection/non-detection)

Deductive modelling (habitat clipping or
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Figure 1 Four approaches for deriving high-resolution gridded distribution maps using data on species’ distributions. (a) Point records

data are fitted into a fine-grain grid and subjected to inductive presence-only or presence–pseudoabsence SDM. (b) Expert-drawn range

maps are fitted into a fine-grain grid, and some parts of the range are ‘clipped out’ according to the known species’ habitat

requirements (Jetz et al., 2007; Rondinini et al., 2011). (c) Systematically collected data on species occurrences are subjected to statistical

presence–absence modelling (also known as ‘occupancy modelling;’ MacKenzie et al., 2006). (d) Downscaling approach proposed in this

article: scale-free point records or range maps are fitted into a coarse-grain grid and then subjected to downscaling. We stress that the

downscaling approach only works when fine-grain data on environment are available.
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describing likely presences and absences of species at coarse

grains (see the next section). These include expert range

maps of continental to global extents (Ceballos & Ehrlich,

2006; Jetz et al., 2007; IUCN, 2012) and broad-scale atlas

efforts in selected parts of the world (Hagemeijer & Blair,

1997; Harrison et al., 1997; Lahti & Lampinen, 1999). How-

ever, their grain is too coarse for many applied purposes and

too coarse to be straightforwardly used in models of fine-

grain processes governing species distributions. With the

increasing availability of high-resolution (fine grain) environ-

mental data (Jetz et al., 2012), ecologists have started to

explore the potential to combine these data with coarse-grain

species’ distributions to produce fine-grain maps of occur-

rence (Ara�ujo et al., 2005; McPherson et al., 2006; Niamir

et al., 2011; Rondinini et al., 2011; Bombi & D’Amen, 2012).

This is what we hereafter call downscaling of species-distri-

bution models (Fig. 1). Similar to the conventional SDM

approaches mentioned above, downscaling aims to produce

fine-grain maps of species distributions. However, instead of

predicting distributions in other (unsurveyed) locations at

the same resolution as the resolution of the original distribu-

tional data, it predicts them at (unsurveyed) resolutions that

are finer than the resolution of the original data. The advan-

tage of downscaling is that it can exploit the coarse-grain

data which in many cases represent the only knowledge on

species’ distributions.

The present paper follows up on previous work (Keil

et al., 2013) where we introduced the use of hierarchical

Bayesian modelling (HBM) for downscaling of species-distri-

bution models. Here, we (1) re-introduce a general statistical

framework to downscale species’ probability of occurrence

(‘occupancy’) to finer grains using HBM. (2) We show how

to incorporate spatial autocorrelation (SAC) and prior

knowledge on habitat preferences into the downscaling

framework. (3) We illustrate how this approach allows the

mapping and interpretation of uncertainty about the down-

scaled predictions. (4) We illustrate our methods using a

case study of distribution of American three-toed wood-

pecker (Picoides dorsalis, Baird 1858) in the United States.

Our paper presents a statistical framework for modelling of

species distributions across multiple scales that can integrate

different kinds of knowledge on species distributions and

biology.

COARSE-GRAIN PRESENCES AND ABSENCES

We purport that all primary human knowledge on species’

distributions is in some form based on point observations in

the field. In practice, this information is converted into, for

example, geo-referenced point records with known or

unknown spatial uncertainty (Guralnick et al., 2007), gridded

census data (Hurlbert & White, 2005; Hurlbert & Jetz, 2007)

and/or converted by experts into two-dimensional abstrac-

tions called range maps.

As geometrical abstractions, point records and range maps

do not have resolution or grain (similarly to a point mass in

physics). They both gain a specific spatial resolution only

after they are fitted (or aggregated) into a grid (Fig. 1),

which is often practical. However, if point records or expert

range maps are fitted into a grid that is too fine, range maps

will generate unacceptable rates of false detection (errors of

commission; Liu et al., 2011), while point records will gener-

ate false non-detections (errors of omission; Liu et al., 2011);

see also Graham & Hijmans (2006) and Jetz et al. (2012).

Also, many regional distributional atlases have already been

compiled and published solely at a coarse grain (Hagemeijer

& Blair, 1997; Harrison et al., 1997; Lahti & Lampinen, 1999).

Hurlbert and Jetz (2007) showed that, in South Africa and

Australia, record-based atlases and range maps give congru-

ent (i.e. reliable) estimates of species richness from resolu-

tions of at least 100 km 9 100 km or 200 km 9 200 km.

This was later confirmed by Hawkins et al. (2008) using

European datasets. La Sorte and Hawkins (2007) performed

further theoretical exploration of the issue although they do

not give a clear recommendation on reliability of particular

grains. Ever since, the recommendation is that macroecologi-

cal studies on groups such as vertebrates that use expert

range maps to explore large-scale patterns of diversity should

be conducted using coarse grains (roughly 100 km 9

100 km or coarser).

The recommendation for range maps ultimately stems

from the simple logic that the coarser the resolution, the

lower the rate of false detections (Hurlbert & Jetz, 2007) –

by coarsening the grain, we can be more confident that a

species could be observed somewhere in a grid cell, but we

are less confident about the exact point locations of the

observations within the cell. Inverse logic should hold for

point record data: the coarser the resolution, the lower the

number of false non-detections (see Appendix S2 for demon-

stration of this in Supporting Information). Moreover, aggre-

gating the point data to grids can potentially correct for

georeferencing errors which can easily reach 10–20 km for

older museum specimens and tropical regions – the rationale

is that, instead of saying that a species was observed exactly

at a given point, we state that the species was observed

somewhere in a larger grid cell.

However, we warn that a comprehensive theory of spatial

scaling of false negatives and false positives is yet absent (see

Appendix S2). There is a large body of literature that deals

with local-scale detectability of species, false absence rates and

how these vary as a function of detection method and the

environment (MacKenzie et al., 2002, 2006; Tyre et al., 2003;

Royle & Dorazio, 2008; Webster et al., 2008; K�ery et al.,

2013). Attempts appear to acknowledge the issue of false non-

detections at large-scale models (Karanth et al., 2009). How-

ever, there is still no literature on how these issues vary as a

function of grain resolution. An additional complication is

the rate of misidentifications (Miller et al., 2011), which we

assume to be either absent or negligible when compared to

the other observational errors, which may not necessarily be

true (Miller et al., 2011). Again, spatial scaling of the misiden-

tification bias in biodiversity data is an unknown territory.
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In this study, we aggregated point observations in order

to generate a coarse-grain dataset to illustrate downscaling.

An alternative modelling approach would be to integrate

the various data types (grid, point and polygon) within the

model rather than performing this ad-hoc aggregation prior

to model fitting. However, our primary objective with this

study is to illustrate downscaling from one spatial grain to

a finer grain (McInerny & Purves, 2011; Keil et al., 2013)

using a hierarchical model (Clark & Gelfand, 2006). This

facilitates probabilistic inference about unobserved (latent)

fine-grain components of the models, given that other fine-

grain variables are known (i.e. the fine-grain data on envi-

ronment in our case). Such models enable downscaling spe-

cies probability of occurrence to grains finer than the grain

of the original distributional data (Fig. 1).

THE RATIONALE OF HIERARCHICAL

DOWNSCALING

Here, we show how the coarse-grain detections and non-

detections can be downscaled to finer resolutions and used

to study species–environment associations at finer grain that

is limited only by the grain of the environmental data. To

perform the downscaling, we first need to formalize the link

between fine-grain environment, unknown fine-grain species

occurrences and known coarse-grain species occurrences

(introduced by Keil et al., 2013).

Let Pi equals the probability that the ith (i 2 1:I) coarse-

grain grid cell is occupied by the species of interest, and pij
equals the probability that the species occupies the jth fine-

grain grid cell (j 2 1:n), where I is the number of coarse-

grain cells, and n is the number of fine-grain cells in coarse-

grain cell i. Each coarse-grain grid cell is composed of n

fine-grain grid cells, and Pi can be defined as one minus the

joint probability of absence (1-pij) in each interior fine-grain

grid cell j:

Pi ¼ 1�
Yn

j¼1
ð1� pijÞ (1)

Note that we are treating the fine-grain absences as inde-

pendent events, and thus, the joint probability of fine-grain

absences is equal to the product of individual probabilities.

Equation 1 gives the link between probabilities of occurrence

at two grains (resolutions), but it can be generalized to

model the relationship between any number of grains. Let us

now model the relationship between (unknown) pij and a

vector of environmental variables (Xij) for each location

using a function f():

pij ¼ f ðXijÞ (2)

The f() can be any commonly used function from sigmoi-

dal to more complicated unimodal or multimodal functions.

GAM and GLM (using logit or probit link functions) offer a

first-choice set of such functions, although other link func-

tions may be useful for species with unbalanced presences

and absences such as the extreme value link function (Wang

& Dey, 2010) or the symmetric power link function (Jiang

et al., 2014). Equation 2 can also be extended by adding a

coarse-grain spatial random effect qi (or even a fine-scale qij)
to incorporate SAC into the model (Latimer et al., 2006, and

the next section):

pij ¼ f ðXij; qiÞ (3)

We can now combine equations 1–3 to link the observed

coarse-grain presences–absences (Oi) with the fine-grain

environment (Xij). Oi can be treated as an outcome of a Ber-

noulli trial with probability Pi of observing the species in the

ith coarse-grain grid cell:

Oi �Bernoulli 1�
Yn

j¼1
ð1� f ðXij; qiÞÞ

� �
(4)

Equation 4 reveals that even though we may not have the

fine-grain detection/non-detection data, we can still estimate

their relationship with fine-grain environment. In principle,

this could be accomplished using maximum likelihood esti-

mation, or Markov chain Monte Carlo (MCMC) techniques

to sample from posterior distributions of parameters of f().

The estimated parameters of f() can be then used to predict

pij using equation 3. Alternatively, the posterior distribution

of each pij can be monitored during the MCMC sampling.

SPATIAL AUTOCORRELATION

Spatial autocorrelation, that is, the higher similarity of closer

locations, is a common phenomenon in ecology (Lichstein

et al., 2002; Latimer et al., 2006; Dormann, 2007). In species

distributions, SAC implies that presence or absence at one grid

cell is not independent from presence or absence in a nearby cell

(Latimer et al., 2006). At large scales, SAC in the probability of

occurrence of a species can emerge for at least two general rea-

sons: (1) dispersal processes which include conspecific attrac-

tion and territoriality, or (2) a spatially autocorrelated niche

component of the species that is not accounted for in the avail-

able environmental data (Dormann, 2007). During the last dec-

ade, numerous spatially explicit methods to account for SAC

emerged and are summarized in a review by Dormann (2007).

Incorporating SAC into a downscaling model has several prac-

tical advantages. The posterior values of spatial component can

be mapped to provide new insights into spatial processes that

were not accounted for by the environmental covariates (Borcard

et al., 2004). Furthermore, by separating the contribution of the

environment and the spatial effects to the expected probability of

presence, it is possible to estimate aspects of both the potential

and the realized niches. The spatial effects bring the model closer

to predicting the actual probabilities of occurrence p (the realized

distribution) by accounting for regions with more (or fewer)

observed occurrences than would be expected given the potential

distribution. For example, if there are environmentally suitable

fine-grain habitats within an unoccupied coarse-grain grid cell,

the spatial component will allow the pij in that cell to be low.
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Alternatively, probabilities predicted by ‘spatially ignorant’

presence–absence statistical models (e.g. non-spatial logistic

regression) are by definition biased towards the more preva-

lent category – either presence or absence (McPherson &

Jetz, 2007). In case of a relatively rare species distributed

over an area of tens of thousands of grid cells, the absences

at fine grain would have such overwhelming effect that no

matter how strong the association with any environmental

variable, the predicted pij would always be extremely low. A

spatial component q allows the pij values in a region to be

low (even if environmentally suitable) if there are few

observed presences. This effectively balances the presence/

absence ratio, while avoiding subsampling of the data (as

done by McPherson & Jetz, 2007). Finally, the way we model

SAC (through q) can account for the effect of major dis-

persal barriers (mountain ranges, deserts) while assuming

that within each occupied coarse-grain cell i, the fine-grain

suitable habitats always lay within dispersal radius of the

species.

PRIOR KNOWLEDGE ON HABITAT PREFERENCES

There is an immense and growing body of natural history

knowledge pertaining to suitable habitats (environmental

conditions) in which species are typically found. Such data

can be provided by distributional atlases, naturalist hand-

books, databases (IUCN, 2012) or directly provisioned expert

knowledge. In cases with limited fine-scale occurrence data,

such information may be useful for improving predictions. A

crude way of using prior information on habitat preference

is to use ‘deductive modelling’ or habitat-based ‘clipping’

(Fig. 1) of expert-drawn range maps to partly eliminate false

presences at fine grain (for broad-scale applications see Jetz

et al., 2007; Rondinini et al., 2011). The approach is equiva-

lent to fitting a logistic function with extremely high or low

prior b ? �∞ (Fig. 2a). However, this is straightforward

only when we can divide habitats into strictly suitable or

unsuitable category. In reality, prior knowledge often has a

semi-quantitative continuous character (e.g. ‘the species pre-

fers mountains to lowlands’), and there is a great deal of

associated uncertainty. The Bayesian framework can incorpo-

rate such prior knowledge (with associated uncertainty) into

the model and propagate the uncertainty through to the

results (Clark & Gelfand, 2006; McCarthy, 2007), although

prior specification is a challenging (and often under-appreci-

ated) element of model development (Winkler, 1967).

Presence–absence models do not directly estimate the out-

comes (presence or absence) but typically logit- or probit-

transformed probability of observing the response variable

(i.e. outcome of a Bernoulli trial). This complicates the pro-

cess as it is not straightforward how to convert, for example,

an expert’s vague verbal description of a suitable habitat

(‘the species prefers mountains to lowlands’) into a probabil-

ity distribution of a model parameter on a logit scale. Gel-

man et al. (2008) provide some guidelines for prior

elicitation in this type of model, recommending specification

of the prior distributions directly on the logit scale. In Fig. 2,

we show that this can be done by first plotting several hypo-

thetical responses using various parameter values (Fig. 2a),

which can help to estimate the prior distribution (Fig. 2b)

(Winkler, 1967), or at least its sensible upper and lower

bounds.

Adding this information has the potential to affect the

results (otherwise there would be no point), and so models

that use informative priors have been criticized for introduc-

ing subjectivity (Lele & Dennis, 2009). A real danger is that

small datasets and informative priors can lead to posteriors

that are driven by the priors rather than the data (Van Don-

gen, 2006). However, in situations where the goal is to use

all available information to make the best possible predic-

tions for policy or management, it can be beneficial to

explicitly incorporate prior knowledge (Fienberg, 2011). Fur-

thermore, in some situations, the use of even very broad

(‘uninformative’) priors can bias the results (Van Dongen,

2006); thus, the sensitivity of the posterior distributions to

the priors (whether informative or uninformative) should be

assessed (Van Dongen, 2006).

UNCERTAINTY IN DOWNSCALED PREDICTIONS

Currently, the approach to express uncertainty in SDM pre-

dictions is rooted in the paradigm of ensemble modelling

(Ara�ujo & New, 2007) where model predictions from differ-

ent modelling techniques are put together and prediction

uncertainty is measured as the discrepancy in the predictions

produced by different techniques (Hartley et al., 2006; Buis-

son et al., 2010; Luoto et al., 2010). This uncertainty can

then be mapped alongside of the mean of the predictions.

Interestingly, the concept of estimating prediction uncer-

tainty within a single modelling technique is almost absent

in current SDM literature (with a few notable exceptions, for

example Royle et al., 2002; Webster et al., 2008; Ib�a~nez et al.,

2009; Chakraborty et al., 2011; K�ery et al., 2013).

Rocchini et al. (2011) call for ‘maps of ignorance’ which

would provide a quantitative input into an SDM so that it

takes into account our uncertainty about species-distribu-

tional data (for example arising from the presence-only char-

acter of the point records). Beale and Lennon (2012) express

similar sentiment calling for correct quantification of uncer-

tainty in SDM output. They also suggest that rather than

attempt to eliminate uncertainty completely (something

impossible by definition), it is better to quantify uncertainty

correctly. The papers review potential sources of uncertainty

but do not offer an exact solution that would propagate

uncertainty through a model into the predictions, although

Beale and Lennon (2012) briefly mention the potential of

hierarchical models to do so.

The uncertainty in our case study results mostly from

errors in the distributional data, model specification, vari-

ance of prior parameter distributions, model fitting and from

particular number of grid cells (sample size) at each spatial

resolution. One of the advantages of Bayesian framework is
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that it naturally quantifies and propagates all of the uncer-

tainties simultaneously. As a result of the modelling proce-

dure, we not only have the full posterior distribution (and

hence uncertainty) of parameter estimates, we can also esti-

mate prediction intervals PI (Geisser, 1993) of the estimated

probabilities of occurrence at each grid cell. The spans of PIs

(the magnitude of the uncertainty) can then be mapped

alongside the actual predicted probabilities.

We note that in presence–absence SDMs, the data are usu-

ally modelled by Bernoulli distribution whose parameter (p:

the probability of success) is bounded between 0 and 1.

Hence, the closer is the mean p to 0 or 1, the narrower is

the scope for the possible uncertainty around p. We suggest

that one way to (partly) avoid the strong effect of the

boundary on p is to describe the posterior distributions of p

by quantiles instead of moments. We also suggest that this is

a potentially fruitful direction of future research.

CASE STUDY: AMERICAN THREE-TOED

WOODPECKER

Case study dataset

To demonstrate our approach, we selected the American

three-toed woodpecker (Picoides dorsalis, Baird 1858) – a

habitat specialist that depends on occasionally disturbed (by

burns or beetle infestation) coniferous forests in high eleva-

tions (del Hoyo et al., 2002; Imbeau & Desrochers, 2002;

Wiggins, 2004; Zarnetske, 2006; Gagn�e et al., 2007). The

conservation importance of the species is unclear due to its

low abundance in mostly temporary habitats and uncertain-

ties in temporal trends of abundance (Wiggins, 2004).

Species-distribution data

We extracted all available point records (detections) of the

species within mainland United States from the freely avail-

able eBird reference dataset 3.0 (Sullivan et al., 2009; Mun-

son et al., 2011) which listed a total of 2261 detected

woodpecker presences in 4.6 million sampling events. The

sampling events consist of lists of species that were detected

at a particular site. For each sampling event, the time, date,

duration, surveyed area and number of observers are

recorded. We also digitized three available expert-drawn

range maps of the woodpecker in the USA. These came

from (1) NatureServe (Ridgley et al., 2007), (2) del Hoyo

et al. (2002) and (3) Wiggins (2004). We decided to use

only the range map of Wiggins (2004) which in relation to

available point data offered the best detail and fit with the

known habitat requirements. We put together information

from both the range map by Wiggins (2004) and eBird

point records to create a 160 km 9 160 km grid of pres-

ences and absences (Fig. 3). If the range map overlapped a

grid cell, it added an extra observation in that grid cell.

The woodpecker was considered to be present in each

160 9 160 km grid cell if there were at least two observa-

tions in that cell. Hence, if only the range map indicated

presence, but there were no actual point observations in the

cell, the species was considered absent (we are aware that

this would be highly problematic for species with too small

or very spatially biased sample). Also, if there was only one

point observation in the grid cell and no overlap with the

range map, the species was considered absent (see Fig. 3a

for the resulting coarse-grained map). We chose the

160 km 9 160 km grain as it is, for North American birds,

coarse enough to give congruent patterns of species distri-

butions (as well as more reliable presences and absences)

for both point records and range maps (Hurlbert & Jetz,

2007; Hawkins et al., 2008).

Validation data

The eBird reference dataset offered high-quality fine-grain

data for validation of our downscaled predictions (Fig. 3b).

We first selected ‘well-sampled’ fine-grain 20 km 9 20 km

grid cells with more than 50 eBird sampling events (Sullivan

et al., 2009; Munson et al., 2011). From these, we selected

375 grid cells in which the woodpecker was observed and a

randomly selected set of 188 high-altitude grid cells (above

1000 m) and 188 low-altitude grid cells (below 1000 m) in
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Figure 2 Illustration of how different

values of b (see equation 5) affect the

probability of occurrence. This can be

used to specify informative prior

distributions of model parameters. Panel

(a) shows how the ‘slope’ (b) of logistic
function changes its shape from a step-

like function (b = 15) to a mild increase

(b = 0.1). Panel (b) shows the

probability density function used as

informative priors on b1 and b4 in
Downscaling model 1. The function is a

gamma distribution with rate parameter

2 and scale of 0.5.
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which the woodpecker was never observed (see the map in

Fig. 3b). The 1000 m threshold was used to provide a suffi-

cient number of high-altitude cells; random sampling from

the whole USA would give almost none of these. We judged

the performance of the downscaling models (see below) by

how well their predictions matched the observed fine-grain

occurrences in the total of 751 cells of the fine-grain valida-

tion dataset (Fig. 3b).

Environmental variables

We used four environmental variables that were selected to

represent potential drivers of the woodpecker’s geographical

distribution in the 20 km 9 20 km fine-grain grid. First, the

bird prefers higher elevations from 1300 m up to 3350 m in

West and from 360 to 1250 m in East United States (del

Hoyo et al., 2002) and coniferous forests. Hence, we calcu-

lated mean altitude (ALT) in each fine-grain grid cell using

2.5 arc-min SRTM dataset (http://www2.jpl.nasa.gov/srtm/).

Second, the bird lives in coniferous forests, preferentially but

not exclusively with spruce present (del Hoyo et al., 2002;

Imbeau & Desrochers, 2002; Wiggins, 2004; Zarnetske, 2006;

Gagn�e et al., 2007).

We calculated (F) square-root-transformed total area of

potentially suitable coniferous forest types (categories Doug-

las-fir, White-red-jack pine, Spruce-fir, Ponderosa pine,

Western white pine, Lodgepole pine and Fir-spruce) in each

grid cell using the USDA Forest Service and USGS AVHRR-

derived forest cover dataset available at http://nationalatlas.gov/

atlasftp.html. Third, species distributions at large scales are gen-

erally considered to be correlated with climate (Peterson et al.,

2011), and we selected two climatic variables to represent pre-

cipitation and temperature regimes (also a proxy of fire risk)

that were the least correlated with altitude and coniferous forest

area. These were mean annual temperature (T) and precipita-

tion (PD) in the driest month, derived from 2.5 arc-min

WorldClim dataset (Hijmans et al., 2005). All four environ-

mental variables were cantered to zero mean and standardized

to variance of 1. Pearson’s correlations between the scaled vari-

ables were �0.52 (ALT, T), �0.51 (ALT, PD), 0.36 (ALT, F),

�0.44 (T, F) and�0.075 (PD, F).

Case study models and methods

Our specific goal was to predict (and validate) the

probability of occurrence of the focal species in a ‘fine’ grid

of 20 km 9 20 km (20,240 cells) using the data on detec-

tions and non-detections in the ‘coarse’ 160 km 9 160 km

grid (372 cells) and environmental variables at the ‘fine’

20 km 9 20 km grain. We use the terms ‘fine’ and ‘coarse’

only for convenience; the method could be applied at any

two spatial grains.

(a) (b)

Figure 3 Graphic representation of the

goals of our case study. (a) Point records

(black dots) and expert-drawn range

maps (grey polygon) for the American

three-toed woodpecker (Picoides dorsalis)

are fitted into a grid of

160 km 9 160 km to represent reliable

presences and absences. These presence–
absence data are linked to fine-grain

environmental conditions by a

hierarchical model which treats the

unobserved fine-grain probability of

occurrence of the species as latent

variable. The (downscaled) fine-grain

probabilities of occurrence are estimated

by MCMC sampling, monitored and

plotted on a map. (b) To validate the

downscaled fine-grain probabilities, we

compare them with the observed fine-

grain occurrences in the 751 well-

surveyed cells of the validation dataset.

Black points indicate detections, white

are non-detections.
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We constructed five models (Table 1) predicting

probability of occurrence of the American three-toed wood-

pecker at the fine 20 km 9 20 km grain (Fig. 5), where the

first two are reference models and the last three are the

downscaling models:

Fine-grain model was the simplest model in the set and

was intended as a reference model. It did not involve any

downscaling, and it was fitted entirely at the fine-grain

using the validation dataset of the 751 fine-grain grid cells

(see the previous section). The model is a classical logistic

regression:

ok �Bernoulli 1þ e�ðb0þb1ALTkþb2Tkþb3PDkþb4FkÞ
� ��1
� �

(5)

where ok is the observed fine-grain presence (detection) or

absence (non-detection) in the kth grid cell (k2 1: 751) of

the validation dataset.

Full 2-scale model was the most complex ‘full-feature’

model in the set, and it was also a reference model meant to

be compared with the downscaling models below. The model

integrated spatial effects at the coarse grain, and it used

logistic function to link fine-grain probabilities of occurrence

pij to fine-grain environmental data.

The model operates simultaneously at two spatial grains at

which the observed presences and absences are linked to

probabilities of occurrence. First, the observed presence or

absence in each coarse-grain grid cell (Oi) is linked to the

interior fine-grain grid cell probability of occurrence (pij)

(see equation 1 for the meaning of i and j):

Oi �Bernoulli 1�
Yn

j¼1
ð1� pijÞ

� �
(6)

At the same time, the observed presence and absence in

each well-surveyed fine-grain grid cell of the reference dataset

(oij) is linked to the fine-grain probability of occurrence (pij):

oij �BernoulliðpijÞ (7)

The fine-grain probability of occurrence is estimated using a

logistic regression with the fine-grain environmental variables

(see also equation 3):

pij ¼ f ðXij; qiÞ ¼ ð1þ e�ðb0þb1ALTijþb2Tijþb3PDijþb4FijþqiÞÞ�1

(8)

where qi is the coarse-grain spatial random effect that

accounts for SAC and Oi is the observed presence or absence

of the species at the 160 km 9 160 km grain. For its intui-

tive nature and widespread use (Lichstein et al., 2002; Lati-

mer et al., 2006; McPherson & Jetz, 2007), we chose the

intrinsic conditional autoregressive (CAR) process (Besag

et al., 1991) using the car.normal distribution in the Geo-

BUGS module in OpenBUGS (Lunn et al., 2009) to model

the coarse-grain spatial random component q as follows:

qijql; l 2 di �N �qi;
w2

mi

� �
(9)

where di is the set of neighbours of grid cell i, �qi is the mean

of the spatial random effects of these neighbours, and mi is

the number of neighbours. The parameter w2 is a variance

term that specifies the magnitude of spatial variation. We

Table 1 Medians of fitted parameters (95% credible intervals in the brackets) of the four models predicting probability of occurrence of

American three-toed woodpecker (Picoides dorsalis, Baird 1858) at the 20 km 9 20 km grain. Performance metrics include Nagelkerke’s

R2 (measures how well models fit the data) and AUC (measures how well models discriminate the data). Both metrics were calculated

using the validation dataset

Full 2-scale

model Fine-grain model Downscaling model 1 Downscaling model 2 Downscaling model 3

Fine-grain data Yes Yes No No No

Coarse-grain data Yes No Yes Yes Yes

Autocorrelation

(CAR)

Yes No Yes Yes No

Informative

prior on

b1 and b4

No No Yes No No

b0 �10.37 (�12.36, �8.85) �2.17 (�2.57, �1.8) �17.89 (�54.11, �9.89) �48.22

(�112.38, �19.15)

�6.96 (�7.63, �6.43)

b1 (ALT) �0.14 (�1.95, 1.62) 0.12 (�0.12, 0.35) 2.51 (0.53, 14.62) 6.98 (�1.36, 6.98) 0.32 (0.06, 0.62)

b2 (T) �2.2 (�4.46, 0) �1.89 (�2.35, �1.45) �5.42 (�18.7, �0.94) �13.27

(�33.41, �3.23)

�1.22 (�1.71, �0.72)

b3 (PD) �1.21 (�2.84, 0.34) 0.0065 (�0.24, 0.36) 0.86 (�3, 7.1) 4.73 (�3.05, 15.49) 0.56 (0.18, 0.9)

b4 (F) 1.12 (0.64, 1.63) 0.58 (0.4, 0.78) 2.65 (0.99, 8.67) 6.81 (1.2, 18.47) 0.96 (0.7, 1.24)

Nagelkerke’s R2 0.768 0.602 0.69 0.665 0.58

AUC 0.958 0.902 0.934 0.930 0.895

Abbreviations next to bs stand for ALT – Altitude; T –mean annual temperature; PD – precipitation in driest month; F – area of coniferous forest.

Parameters in bold indicate that 95% credible intervals do not overlap zero.

804 Diversity and Distributions, 20, 797–812, ª 2014 John Wiley & Sons Ltd

P. Keil et al.



chose to incorporate SAC only at the coarse grain because of

the computational limitations (2GB limit of the 32-bit Open-

BUGS v3.2.1; OpenBUGS Foundation). Also, we were trying

to capture coarse-scale processes with the CAR such as dis-

persal limitation, rather than fine-scale variability.

Downscaling model 1 is almost identical to the Full 2-scale

model. The only difference is that it does not use any

observed presence and absence (oij) at the fine-grain cells. It

is fitted using only the Oi and Xij data. To summarize this

model formally, it consists of the following equations (the

notation is identical to the Full 2-scale model):

Oi �Bernoulli 1�
Yn

j¼1
ð1� pijÞ

� �

pij ¼ f ðXij; qiÞ ¼ 1þ e�ðb0þb1ALTijþb2Tijþb3PDijþb4FijþqiÞ
� ��1

qi j ql;l 2 di �N �qi;
w2

mi

� �

Another distinct feature is that the model used informa-

tive priors (Fig. 2). We set informative prior distributions

only on coefficients b1 (the known positive response of

the species to increasing altitude; del Hoyo et al., 2002;

Gagn�e et al., 2007; Imbeau & Desrochers, 2002; Wiggins,

2004) and b4 (the known positive response to the increas-

ing area of coniferous forests; del Hoyo et al., 2002). In

both cases, we did not expect a sharp step-like response

of the species to environment (i.e. ‘the species almost cer-

tainly and suddenly appears after crossing a certain thresh-

old value along the gradient of increasing forest area or

elevation’; b > 15), nor did we expect a weak gradual

response (i.e. ‘the species’ probability of occurrence

increases very slowly along the whole gradient of increas-

ing forest area or elevation’; b > 0.1). Hence, we used

gamma distribution with rate parameter 2 and scale of 0.5

(Fig. 2b). For b0, b2 and b3, we used normally distributed

non-informative priors with zero mean and variance of

100.

Downscaling model 2 was formally identical to the Down-

scaling model 1, but it used non-informative priors on all

coefficients b0���b4 (normally distributed with mean 0 and

variance of 100).

Downscaling model 3 differed from the previous models by

not using the coarse-grain spatial random component q and

no prior information. Its complete definition is (the notation

is identical to the Full 2-scale model):

Oi �Bernoulli 1�
Yn
j¼1

ð1� pijÞ
 !

pij ¼ 1þ e�ðb0þb1ALTijþb2Tijþb3PDijþb4FijÞ
� ��1

For all models, we estimated posterior distributions of b,
q and p using OpenBUGS (Lunn et al., 2009). We ran four

MCMC chains, each of 200,000 iterations in total, discarded

the first 150,000 iterations as burn-in and thinned the

remaining 50,000 by saving every 50th iteration. We visually

checked the resulting chains (of b) for convergence; we did

not perform any additional formal convergence diagnostics.

BUGS and R codes and data that were used to fit the models

are provided in Appendix S1. Finally, we used the fine-grain

validation dataset to measure discrimination capacity of all

of the models (by AUC; Liu et al., 2011) and their goodness

of fit (by Nagelkerke’s pseudo R2; Nagelkerke, 1991).

Case study results

Model coefficients and spatial patterns of the predictions

from all five models were qualitatively similar (Table 1, Figs 4

and 5), but they differed in magnitude and uncertainty.

Full 2-scale model and fine-grain model

Both of the reference models gave the narrowest posterior

distributions of coefficients (Table 1, Fig. 4). The Full 2-

scale model outperformed all of the models by having the

highest AUC and Nagelkerke’s R2 (Table 1, Fig. 5). Both

models also produced large number of grid cells with high

occurrence probability (P > 0.5) and low uncertainty (span

of the 95% pred. intervals < 0.5) (Appendix S2). The over-

all prediction uncertainty was much lower in the two ref-

erence models than in the downscaling models (Appendix

S2). Notably, the fine-grain model with no spatial random

effects predicted high pij values in areas where the species

has never been observed (e.g. Sierra Nevada, CA; Fig. 5).

Downscaling models

Downscaling models 1 and 2 (with spatial random effects)

gave much broader posterior distributions of parameters

(greater uncertainty) and larger magnitude of the effects of

environmental variables compared with the previous two

models (Fig. 4). The Downscaling model 2 with non-infor-

mative priors led to broadest posteriors (Fig. 4) and more

extreme values of the coefficients (Fig. 4), as expected (infor-

mative priors tend to ‘squeeze’ the posteriors).

With AUC values of 0.93 and 0.92, the Downscaling mod-

els 1 and 2 were able to successfully discriminate presences

and absences in the validation dataset (Table 1, Fig. 5). They

also fit the data reasonably well as shown by the Nagelkerke’s

pseudo R2 of 0.69 and 0.665 for the Downscaling models 1

and 2, respectively (Table 1, Fig. 5). Importantly, using

informative priors in model 1 somewhat improved the pre-

dictions (higher AUC and Nagelkerke’s pseudo R2). Down-

scaling model 3 that used non-informative priors and no

SAC performed worst (AUC = 0.895, Nag. R2 = 0.58;

Table 1, Fig. 5). Surprisingly, although the fine-grain Refer-

ence model would generally be considered to perform well

(AUC = 0.902, Nag. R2 = 0.602), it still performed worse

than the first two downscaling models.
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As it performed best, we further elaborate the predictions

and their uncertainty of the Downscaling model 1 (see

Appendix S2 for details on the other models) which incorpo-

rated both SAC and prior information (Fig. 6). We were able

to identify vast areas with low probability of occurrence

(pij < 0.5) and low uncertainty (the grey areas in Fig. 6e) as

well as small number of areas where the presence of the spe-

cies is likely (pij > 0.5) and more certain (the green areas in
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Figure 4 Median values of model parameters and their 95% credible intervals for Downscaling model 1 (informative priors, spatial

random effects), Downscaling model 2 (non-informative priors, spatial random effects), Downscaling model 3 (non-informative priors,

no spatial random effect) and Reference model (non-informative priors, no spatial random effects, fitted using the 751 well-surveyed

cells), and the Reference model. Note that informative prior distributions were set only for b1 and b4 in Model 1 (see also Fig. 2). For

exact values, see Table 1. Abbreviations below bs stand for ALT – altitude; T – mean annual temperature; PD – precipitation in driest

month; F – area of coniferous forest.

(a)

(b)

(c)

(d)

(e)

Figure 5 Mean predicted values of fine-

grain (20 km 9 20 km) probability of

occurrence (pij) of the American three-

toed woodpecker, as predicted by the five

models (a–e). AUC and Nagelkerke’s R2

were calculated using the predicted pij
values and the observed presences–
absences in the 751 well-surveyed grid

cells at the 20 km 9 20 km grain of the

validation dataset (Fig. 3b).
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Fig. 6e). However, we also identified considerable areas of

very uncertain model predictions (the red and blue areas in

Fig. 6e). Special attention should be paid to areas with

extreme values of the spatial random effects q (Fig. 6d).

Many of the low probability and high uncertainty areas (the

red areas in in Fig. 6e) coincide with high values of the spa-

tial random component (e.g. the coarse-grain grid cell over-

lapping borders of Texas, New Mexico, Colorado and

Kansas) (Fig. 6d,e). Similarly, there are areas of seemingly

suitable habitats that are, however, quite certainly not occu-

pied by the species – these coincide with the extremely low

values of spatial random effects (Fig. 6d).

DISCUSSION

We previously demonstrated the hierarchical downscaling

approach in Keil et al. (2013) using a multispecies dataset with

relatively small spatial extent from San Diego county, Califor-

nia, and downscaling from 15 km 9 15 km to 5 km 9 5 km.

Here, we show that the hierarchical approach can be used to

downscale maps of species distribution at much larger (near-

continental) extents and over larger spans of grains (from

160 km 9 160 km down to 20 km 9 20 km). We also show

that explicitly invoking SAC and prior information on species’

habitat preferences can be beneficial for such downscaling

efforts.

Benefits of spatially explicit modelling

As is often the case (Dormann, 2007), the incorporation of

SAC (here as CAR random effects) improved performance of

our models. However, there has been another benefit of the

CAR random effects: it revealed specific areas of potentially

dubious data quality or areas where our environmental predic-

tors performed poorly. For example, note the relatively large

negative spatial effects (q) in the south-western corner of the

region (California and Nevada, Fig. 6d). This complements

the non-spatial models which predict some probability of

occurrence in California and Nevada, although the species was

never observed there. This indicates that there were fewer

occurrences documented in that region than would be

expected given the environmental data. Patterns like this could

be due to several factors, including (1) less sampling effort in

that region leading to relatively more frequent false negatives

in the data, (2) important environmental factors limiting the

species that were not included in the model, (3) limited spe-

cies’ dispersal into the region or (4) biological interactions

(e.g. interspecific competition) limiting the species’ range. In

this case, a closely related Black-backed Woodpecker (Picoides

arcticus, Swainson, 1832) inhabits similar habitats and occu-

pies much of the Sierra Nevada and nearby regions, potentially

displacing Picoides dorsalis (Bock & Bock, 1974).

Conversely, there are several coarse grid cells in our case

study data with presences that are unexpected given the

environment. The model accounts for observations in those

areas with relatively large positive spatial effects (see Fig. 6d).

Those observations could be a result of misidentification,

intraspecific variation in habitat preferences, infrequent

occurrence (e.g. in sink locations on range edges) or an acci-

dental visit of the organism. Incorporating spatial effects into

the model allows the (spatially autocorrelated) possibility

that a species could be absent from a region with a suitable

environment or present in unsuitable environment. In the

maps, these anomalous regions appear ‘blocky’ due to the

scale at which we estimated the spatial effects. It would be

possible, and perhaps desirable, to use a spatially continuous

spatial model, such as a predictive process model (Banerjee

et al., 2008), to account for autocorrelation in place of the

simple CAR used here. By design, spatial effects capture spa-

tial variability that is unexplained by the rest of the model,

and thus, they cannot explain the cause of the patterns in

the posterior estimates of q. However, the mapped spatial

random components are useful to generate additional

hypotheses, consider alternative environmental data or iden-

tify dubious distributional data.

Benefits of prior knowledge

Without a fine-grain validation dataset, any downscaling

effort will be a blind walk in an unknown territory where

every additional piece of information can guide the model

towards more accurate predictions, especially in case of spe-

cies that are extremely rare or common at the coarse-grain

(Keil et al., 2013). In spite of its associated controversy,

usage of prior information on model structure (Hooten &

Wikle, 2008) and model parameters (Dupuis & Joachim,

2006; Pagel & Schurr, 2012; Zipkin et al., 2012; Gopalaswam-

y et al., 2013) is starting to find its way to occupancy- and

species-distribution modelling. An extreme case of large-scale

use of extremely strong priors (although not explicitly

described as such) is the ‘range-clipping’ approach (Jetz

et al., 2007; Rondinini et al., 2011; Fig. 1b). Here, we have

outlined and tested a simple and conceptually consistent way

to specify priors for parameters of logistic regression – even

our rather conservative priors on only two model parameters

led to decreased uncertainty in parameter estimates and to

improved model performance.

Benefits of quantifying uncertainty

As noted earlier, maps of prediction uncertainty are still rare

in the field of SDM (Rocchini et al., 2011; Beale & Lennon,

2012). Studies that explicitly work with statistical uncertainty

sensu stricto are also rare (Royle et al., 2002; Webster et al.,

2008; Ib�a~nez et al., 2009; Chakraborty et al., 2011; K�ery

et al., 2013). We have shown that mapping of the uncer-

tainty around single-model predictions can considerably

change their interpretations. At first glance, the maps of

mean or median predictions (Fig. 5) give seemingly straight-

forward and even ‘pretty’ description of where to expect the

species (we note that this is how the vast majority of SDM

results are presented). However, a closer look at the prediction
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uncertainties (Fig. 6e) reveals that only a small fraction of

the fine-grain grid cells give confident predictions of high

occurrence probability.

One of the novelties of our approach is that our estimates

of uncertainty incorporate the cross-scale relationships

inferred by the model. So we have an explicit representation

of where we can trust the model (e.g. the grey and green

areas in Fig. 6e) and where we should be more wary (the

blue and red areas in the same figure). The cells with the

span of 95% CI of pij larger than 0.9 indicate areas with large

uncertainty as to whether or not P. dorsalis occupies the cell,

which represents the state of knowledge given the data.

We argue that quantifying (and communicating) the pre-

diction uncertainties is vital to interpreting and/or using

model results for decision-making. For example, consider

two locations with median posterior of pij > 0.95 (indicating

high probability of occurrence). Now imagine that the 95%

CI of one location ranges from nearly 0 to almost 1 (a ‘blue’

pixel from Fig. 6e), while the other from 0.6 to nearly 1 (a

‘green’ pixel from Fig. 6e). We should be less confident (and

less willing to act upon) on the information in the first loca-

tion. The quantification of uncertainty provides an explicit

mechanism to incorporate model uncertainty into decisions,

such as conservation plans.

Furthermore, one could include additional sources of

uncertainty such as in the underlying environmental data

itself as explained in Wilson and Silander (2014). In contrast,

many of the commonly used techniques (Elith et al., 2006;

Peterson et al., 2011) are not capable of estimating uncer-

tainty and result in predictions that offer only limited oppor-

tunity for inference (Chakraborty et al., 2011; Yackulic et al.,

2012). Finally, quantification of uncertainty is especially

(a)

(b)

(c)

(e)

(d)

Figure 6 Detailed elaboration of the predictions (at the 20 km 9 20 km grain) of the Downscaling model 1 that incorporated

informative priors on habitat preferences and spatial autocorrelation. Medians (a) and 95% prediction intervals (b,c) of the probability

of the woodpecker occurrence. For example, a 2.5 quantile (b) of 0.51 (yellow) indicates that there is only a 2.5% probability that the

true probability of presence is less than 0.51. Conversely, a 97.5% quantile (c) of 0.05 (grey) indicates that there is a 97.5% probability

that the true probability of presence is <0.05 (virtually certain to be absent). (d) Median values of the spatial random effects. (e) Fine-

grain grid cells were classified into four categories, according to the predicted probability of the woodpecker’s occurrence and

uncertainty around this prediction. Appendix S2 provides equivalent maps for Downscaling models 2, 3 and the Reference model.
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valuable for downscaling because, in many cases, no fine-

grain validation data are available. Quantifying the prediction

uncertainties will help us decide how much confidence to

have in model predictions.

Warning: technical limits

So far it might have seemed that our approach has only ben-

efits and advantages. There is, however, a severe limitation.

Current MCMC samplers can have high computational

demands and cannot be simply parallelized within individual

MCMC chains. Moreover, the very nature of the modelling

makes any analysis at large scales more difficult to code,

debug and by orders of magnitude more time-consuming

than the single-scale SDM techniques implemented in estab-

lished software packages. A simple additional calculation or

model modification can take days, weeks or even months to

run in OpenBUGS or JAGS. We previously tested our down-

scaling approach on a simple and small dataset and corre-

sponding models (Keil et al., 2013) which did not pose such

a challenge. Here, we increased the extent of the data and

included the spatial random components – and proved it

possible and beneficial. However, there was a cost of steep

learning curve of the Bayesian methods, extensive data and

model preparations, long waiting times and unpredictable

software crashes (see Appendix S1 for more details).

These limitations must be addressed if the approach is to

be used for large sets of species, for automatized model-

selection purposes and cross-validation and for even larger

extents than we used (e.g. global). We are optimistic that this

will soon be possible. The emerging Hamiltonian Monte

Carlo samplers (Hoffman & Gelman, 2011) and within-chain

parallelizing procedures (Chakraborty et al., 2010) may pro-

vide speedup. Finally, likelihood optimization algorithms

(Bolker, 2008) may serve as a fast alternative to MCMC,

although their capabilities to fit complex spatial models

propagate uncertainty and use informative priors are limited.

Coda

Our current understanding of the global distribution of bio-

diversity is based upon observations of species occurrences at

a variety of spatial grains and with different limitations rang-

ing from presence-only point observations to more absence-

focused expert-drawn range maps that are reliable at coarse

scales of hundreds of km. The availability of fine-resolution

data on our physical environment (e.g. topography and cli-

mate) has led to a biodiversity ‘scale gap’ in the data

availability at different spatial resolutions that constrains

conservation and management (Jetz et al., 2012). Although

potentially computationally challenging, the framework pre-

sented here helps to overcome the scale gap by integrating

heterogeneous species’ distributional data with fine-scale

environmental data to enable statistical modelling of biodi-

versity at fine spatial resolution. Looking forward, we see

great promise in this type of approach, including modelling

species occurrences using scale-free non-homogeneous Pois-

son process models that can then be aggregated to any

desired grain (Chakraborty et al., 2011).
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