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Summary

1. Reliable methods to downscale species distributions from coarse to fine grain (equivalent to resolution or

support) hold great potential benefit for ecology and conservation. Existing methods have been based on

partially unrealistic assumptions and yieldmixed results.

2. Here, we introduce a novel and simple approach for downscaling species distribution models based on a

hierarchical Bayesian modelling (HBM) framework. Our approach treats putative (unknown) fine-grain

presences/absences as latent variables, which are modelled as a function of observed fine-grain environmental

variables and constrained by observed coarse-grain presences/absences using logistic regression. The aim is to

produce downscaled fine-grain probabilities of species occurrence that (1) closely resemble the probabilities

produced by a logistic model parameterized with the observed fine-grain data (the ‘reference model’) and (2) are

improvements over conventional downscalingmethods.We additionally test how fine-grain occupancy based on

power-law scale-area relationships modifies the downscaling results. We test our approach on 127 bird species

from the SanDiego breeding atlas data surveyed at 5 km grain.

3. TheHBMapproach provides unbiased fine-grain probabilities of occurrence whilst the conventionalmethods

(direct approach, point sampling) consistently over-predict occurrence probabilities. Incorporation of the down-

scaled occupancy further improves reliability of the models, but only in cases when the fine-grain occupancy is

estimated accurately.

4. Summing predictions across grid cells and species, HBMs provide better estimates of fine-grain species

richness than conventional methods. They also provide better estimates of fine-grain occupancy (prevalence).

5. The presented HBM-based downscaling approach offers improved predictions of fine-grain presence and

absence compared with existing methods. The combination of the Bayesian approach with key macroecological

relationships (specifically, the scale-area relationship) offers a promising general basis for downscaling distribu-

tions that may be extended, for example, using generalized linear or additive models. These approaches enable

integrative predictions of spatial biodiversity patterns at fine grains.
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Introduction

Thanks to increasingly fine-grain climatic and remotely sensed

data available for species distribution modelling (SDM), the

grain (i.e. the area of a single grid cell in a gridded dataset) of

the species occurrence data has become the key limiting

factor for many questions in ecology and conservation (Jetz,

McPherson & Guralnick 2012). Either implicitly (e.g. point

observations with high rate of false negatives and/or large

spatial uncertainty) or explicitly (e.g. biodiversity atlas data at

defined grain) species distribution knowledge is typically much

coarser than the grain of many biological processes, the grain

at which management decisions are made and the grain of

available environmental data.

There is thus great potential value and opportunity in the

downscaling of species distributions, that is, the combination

of coarse-grain species occurrences with fine-grain environ-

mental data to predict species’ distributions at a fine grain, in

a single modelling framework. With increasing availability

of survey data and fine-grain environmental information,

downscaling methods have been of growing interest (Lloyd &

Palmer 1998; Araújo et al. 2005; McPherson, Jetz & Rogers

2006; Trivedi et al. 2008; Niamir et al. 2011; Bombi &

D’Amen 2012). However, many of the proposed downscaling

methods have provided results of mixed quality (Araújo et al.*Correspondence author. E-mail: pkeil@seznam.cz
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2005; McPherson, Jetz & Rogers 2006 and references therein),

and no methods exist that explicitly account for the hierarchi-

cal spatial structure in ecological data.

For example, the direct approach (Araújo et al. 2005;

McPherson, Jetz & Rogers 2006; Bombi & D’Amen 2012)

applies model parameters estimated at coarse grains to predict

fine-grained species occurrences using fine-grained environ-

mental variables. It relies on the strong assumption that

fine-grain species distributions show the same environmental

associations as distributions at the coarse grain – an assump-

tion that usually does not hold (e.g. Menke et al. 2009). The

iterative approach (McPherson, Jetz & Rogers 2006) is similar

to the direct approach, but instead of applying the coarse-grain

model directly to fine grains, it first downscales species distri-

butions to some intermediate grains and then to the fine grains

(the algorithm is quite complex; seeMcPherson, Jetz &Rogers

2006 for details). However, the biologically unrealistic assump-

tion of the direct approach remains. In the third approach,

termed point sampling (Lloyd & Palmer 1998;McPherson, Jetz

& Rogers 2006; Niamir et al. 2011), fine-grain cells are sam-

pled (by various algorithms) from the occupied coarse-grain

cells. The sampled fine-grain cells are then treated as fine-grain

presences and linked to fine-grain environment. This approach

requires the different, but also usually untenable assumption

that all areas within the occupied coarse-grain cells host condi-

tions suitable for themodelled species. Finally, in the clustering

approach (McPherson, Jetz &Rogers 2006), the fine-grain cells

in the occupied coarse-grain cells are subject to cluster analysis

based on environment within the cells. Clusters of fine-grain

cells that are present in all of the occupied coarse-grain cells are

then expected to contain environments suitable for the species.

The approach assumes that each occupied grid cell must have

some favourable habitat and that this habitat is more homoge-

neous from one occupied cell to the next than unfavourable

habitat (McPherson, Jetz & Rogers 2006). As a limitation, the

method ignores absence information. Several other methods

have been proposed, such as the range clipping method based

on prior expert knowledge of a species’ habitat preferences

(Jetz, Wilcove & Dobson 2007; Niamir et al. 2011; Rondinini

et al. 2011) or physiological climatic tolerances (Kearney &

Porter 2009). Niamir et al. (2011) suggested a hybrid approach

in which point sampling was combined with expert knowledge

on habitat preferences.Here, we focus on situations where only

species presences/absences and environmental data are avail-

able, and thus do not consider models that rely on additional

expert knowledge.

Hierarchical Bayesian models (hereafter HBM) (Gelfand

et al. 2005; Latimer et al. 2006; MacKenzie et al. 2006;

Chakraborty et al. 2010; Wilson et al. 2011) offer a frame-

work for integrating processes acting at different grains whilst

avoiding the potentially untenable assumptions listed above.

In spatial ecology, HBMs have been used to combine point

species occurrence data (Latimer et al. 2006) or abundance

data (Chakraborty et al. 2010) and gridded environmental

conditions. MacKenzie et al. (2006) provide basic applications

of HBMs in the field of SDM, including the use of species’

occurrences at the nonsurveyed sites as latent variables

(although not in the multi-scale context). McInerny & Purves

(2011) used HBM to retrieve fine-grain species’ environmental

niches from coarse-grain environmental data with unknown

(latent) fine-grain variation. Niamir et al. (2011) used the term

Bayesian to describe their downscaling method but in their

case it refers to the way of combining prior expert knowledge

on habitat requirements with fine-grain environment (their

MaxEnt SDM is not Bayesian). To our knowledge, a broadly

applicable hierarchical Bayesian approach to downscaling

species distribution models from coarse to fine grains has not

been tested.

Although it is still unclear why, species distributions can be

to some degree self-similar (fractal) across grains (Virkkala

1993; Condit et al. 2000) or predictably self-dissimilar (Lennon

et al. 2007; Storch et al. 2008; Azaele, Cornell & Kunin 2012).

Hence, some of the fine-grain properties of species distribu-

tions can be predicted independent of environmental variables

using only coarse-grain occurrences. One such property is spe-

cies’ occupancy, which is the number of occupied grid cells at a

given grain and which is convertible to prevalence (proportion

of occupied grid cells). It has been shown that the area of occu-

pied grid cells (convertible to occupancy) scales more or less

predictably with grain. This scaling relationship is known as

the occupancy-area relationship (He & Condit 2007), scale-

area relationship (Kunin 1998; this is the term that we hereafter

use), range area relationship (Harte et al. 2005), area–area

curve (IUCN Standards & Petitions Subcommittee 2011) or

scaling pattern of occupancy (Hui et al. 2009). Kunin (1998)

used a simple power-law (fractal) scale-area relationship to

estimate fine-grain occupancy using only coarse-grain occu-

pancy. The exercise was then refined using other models that

do not assume strict fractality (see Azaele, Cornell & Kunin

2012 for review). Although there is no general consensus on

which of the models is the best, it is becoming clear that

estimating fine-grain species’ occupancy from coarse data is

a promising prospect (Azaele, Cornell &Kunin 2012). Interest-

ingly, none of the current SDM-downscaling techniques

incorporate it.

In this paper, we introduce a HBM approach to downscale

species distribution models combining coarse-grain species

presences/absences and fine-grain environmental data. It

avoids loss of information caused by averaging of fine-grain

environment (as in the direct approach; McPherson, Jetz &

Rogers 2006) and arbitrary re-sampling of the coarse-grain

presences/absences (as in the point sampling approach;

McPherson, Jetz &Rogers 2006). It is based on a simple HBM

model as follows: (1) the unobserved or ‘latent’ fine-grain

probabilities of species occurrences are modelled as a function

of the observed fine-grain environmental conditions (the data).

(2) In each coarse-grain grid cell, the fine-grain occurrence

probabilities are combined and the resulting coarse-grain

occurrence probability is linked to the observed coarse-grain

presences/absences (the data). (3) The scale-area relationship

(sensu Kunin 1998) is incorporated by fitting the scale-area

relationship at coarse grains and then extrapolating it to

predict occupancy at finer grains. We use fine-grained survey

data for 127 bird species to compare the success of this new
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method to alternative approaches and to explore its broader

applications.

Materials andmethods

THE DATA

We tested our downscaling methods using data on 127 breeding bird

species surveyed in San Diego County, California, USA (Fig. 1).

Specifically, we used data from the SanDiegoCounty BirdAtlas (Unitt

2005), collected over a period of 5 years, fromMarch 1997 to February

2002. The presence–absence data are organized in a grid system of 479

cells that are approximately 5 9 5 km2 each (Figs 1 and 2a). The data-

set is especially suitable for our purposes as the rate of false absences

should be negligible (high sampling effort in small region, with exten-

sive expert effort dedicating to minimizing false absence rate), and it

covers a heterogeneous landscape with steep environmental gradients

(Unitt 2005). We used only breeding season species distributions data.

The resulting 5 9 5 km2 data (Figs 1 and 2a), which we consider

fine grain, were used to generate coarse-grain data of 15 9 15 km2

(Figs 1 and 2b) and super coarse-grain data of 30 9 30 km2 (Fig. 2c)

by setting all coarse-grain grid cells with at least one occurrence in a

nested fine-grain grid cell to constitute presences. We excluded some of

the fine-grain cells along the margins so that the fine-grain data were

fully nested within the coarse-grain grid. We excluded all species that

we considered to be accidental observations (based on W.J.’s expert

knowledge) and all ‘waterbirds’ in the broadest sense (e.g. ducks, geese,

terns, waders), that is, those that predominantly feed in or around

water during the breeding season, because their key habitat require-

ment is not well captured and not straightforwardly correlated with

our main environmental variables. We analysed only species that were

present in at least 3 (of 46) coarse-grain grid cells and with a maximum

of 44 (of 46) occupied coarse-grain cells. This resulted in 414 fine-grain

(Fig. 2a), 46 coarse-grain (Fig. 2b) and 11 super coarse-grain (Fig. 2c)

grid cells. We also excluded � 20 species for which the nonhierarchical

models were impossible to fit realistically (see the model fitting section

for details). This resulted in 127 bird species in total (of 389 bird species

that breed in SanDiego county).

For each of the fine-grain 5 9 5 km2 grid cells, we used five environ-

mental variables to predict species distributions. These were as follows:

normalized difference vegetation index (NDVI), mean summer temper-

ature, mean annual precipitation, mean elevation and square-root

transformed urbanized area (seeMenke et al. 2009 for detailed descrip-

tion of these variables). Colinearity between predictors can bias param-

eter estimates and may cause convergence problems in Markov Chain

Monte Carlo (MCMC) algorithms (Clark &Gelfand 2006). Hence, we

subjected the five variables to principal components analysis (PCA)

and extracted the first two PCA axes (centred, standardized, explained

58�9% and 28% of variability, respectively), which then served as our

environmental predictors of species distributions. Hereafter, we call

them envi1 (correlated with NDVI, Pearson’s r = �0�83; summer tem-

perature, r = 0�88 and precipitation, r = �0�98) and envi2 (correlated

with urbanized area, r = �0�88 and elevation, r = 0�62).

THE MODELS

The models we present below have two levels. The first represents the

relationship between fine-grain probability of occurrence and fine-grain

environmental conditions – this is the SDM part of the model. We use

logistic regression as the SDM part, but it can be readily replaced by

other functions. The second level models how the relationship between

occurrence probabilities and environment behaves at different grains,

and it is themain focus of this study.

Our first model (Model 1) does not involve any downscaling part

and was parameterized using fine-grain presence/absence data and the

fine-grain environmental variables. Because this model uses the true

fine-grain data on species’ occurrences, we consider it the ‘best-case’

scenario and use it as a referencemodel to judge the performance of the

remaining models that use coarse occurrence data.We then present the

two conventional models (Models 2 and 3), which are similar to those

used in previous downscaling studies (McPherson, Jetz & Rogers

2006). Finally, we introduce three novelHBMs (Models 4–6).

0 30 6015 km

San Diego

Santa Ana Palm Springs

Fig. 1. Geographical extent of our study. Displayed are shaded relief, major urban areas (white), the finest-grain grid (5 9 5 km) and the coarse-

grain grid (15 9 15 km). The grid system is based on the historic Public Land Survey System (USDepartment of the Interior 1973).
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All of our models are variants of logistic regression for the binary

response variables (Guisan, Edwards &Hastie 2002). The main reason

for using logistic regression is its simplicity, transparency and its gener-

ally strong performance andwide-spread use for presence–absence data

(Elith et al. 2006). Themodel formula is:

log
p

1� p

� �
¼ aþ b� envi1þ c� envi2 eqn 1

where p is the vector of probabilities of presence of a modelled species

at sites described by vectors of environmental conditions envi1 and

envi2. a, b and c are regression coefficients. For illustration, we prefer

the a, b and c notation to the equivalent b0, b1 and b2 (or ‘betas’) used
in some literature. Note that eqn 1 does not explicitly refer to any par-

ticular grain yet.

Model 1 – the fine-grain referencemodel

To estimate the accuracy of the downscaling techniques (Models 2–6),

we first need a reference model that is parameterized using both

fine-grain environmental data and fine-grain data on presences/

absences, that is, a reference fine-grain model (hereafter Model 1).

The closer the parameters of Models 2–6 are to those of Model 1 the

better. Model 1 is described as follows: Let pij be the probability of a

species’ occurrence at fine-grain grid cell j within a coarse-grain grid

cell i. pij is related to fine-grain environmental variables envi1ij and

envi2ij:

log
pij

1� pij

� �
¼ aþ b� envi1ij þ c� envi2ij: eqn 2

We fitted eqn 2 usingmaximum likelihood and estimated 95%confi-

dence intervals for themodel parameters.

Model 2 – direct approach

Model 2 represents the conventionally used ‘direct approach’ (Araújo

et al. 2005; McPherson, Jetz & Rogers 2006; Bombi & D’Amen 2012).

It assumes that species distributions at fine grains are driven by the

same processes as at coarse grains. First, we fitted the following

formula:

log
Pi

1� Pi

� �
¼ aþ b� envi1i þ c� envi2i eqn 3

wherePi is the probability of a species’ occurrence in a coarse-grain cell

i, and envi1i and envi2i are mean values of environmental conditions of

the fine-grain grid cells that lay within coarse-grain cell i. We fitted

eqn 3 to the coarse-grain presence/absence data using maximum likeli-

hood. Estimated values of a, b and c from eqn 3were then used directly

in eqn 2 to predict the fine-grain probabilities pij.

Model 3 – point sampling

The point sampling approach (McPherson, Jetz &Rogers 2006; Bombi

& D’Amen 2012) avoids coarsening the fine-grain environmental vari-

ables (as carried out in Model 2) by randomly choosing, within each

coarse-grain cell, a fixed number (one in our case) of fine-grain cells.

Point sampling assumes that all fine-grain cells within the occupied

coarse-grain cell host conditions equally suitable for the modelled

species. These fine-grain cells were assigned species presence/absence

values according to values in the coarse-grain cell to which they belong.

The resulting sub-sampled fine-grain data were then used to fit eqn 2.

The sampling procedure was repeated 100 times for each species, and

we estimated values of a, b and c as averages of the 100 outcomes.

We also ran the model with 2–8 sampled fine-grain cells, and the results

were nearly identical.

Rock Wren (Salpinctes obsoletus)

Purple Finch (Carpodacus purpureus)

Peregrine Falcon (Falco peregrinus)
5 km x 5 km 15 km x 15 km 30 km x 30 km

log10 area of a single grid cell

lo
g 1

0 
ar

ea
 o

f a
ll 

oc
cu

pi
ed

 g
rid

 c
el

ls

(a) (b) (c) (d)

1·5 2·0 2·5 3·0

3·
7

3·
8

3·
9

4·
0

1·5 2·0 2·5 3·0

3·
2

3·
4

3·
6

3·
8

1·5 2·0 2·5 3·0

2·
4

2·
8

3·
2

3·
6

Fig. 2. Example of distribution data for three species (differing in their occupancy – from rare to widespread) at three grains. The dashed line in (b)

and (c) delineates areas that were used to downscale the proportion of fine-grain occupancy using the power-law scale-area model. Panel (d) shows

how the power-law (dashed line) scale-area model was fitted to the 15 9 15 km data and 30 9 30 km (filled circles) and extrapolated to the

5 9 5 kmfine grain forModel 5. Empty circle is the true occupancy at 5 9 5 km.
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Model 4 –HBMwith environment only

This is the simplest of our HBMs (also summarized in Fig. 3). The

model requires only coarse-grain species presences/absences and fine-

grain environmental variables (similarly to Models 1–3). The model is

described as follows: Let pij be the probability of a species’ (unobserved,

or ‘latent’) occurrence at fine-grain grid cell jwithin a coarse-grain grid

cell i. pij is related to environmental variables envi1ij and envi2ij (in the

sameway as in eqn 2):

log
pij

1� pij

� �
¼ aþ b� envi1ij þ c� envi2ij

where parameters a, b and c are random variables. The next level in the

model links the fine-grain probabilities to the coarse-grain observed

occurrence data. Let Yi be the observed presence/absence (1/0) of the

modelled species at coarse-grain grid cell i. Yi is thus an outcome of a

Bernoulli trial:

Yi �BernoulliðPiÞ eqn 4

where Pi is the probability that at least one of them fine-grain grid cells

will be occupied by the species. It equals one minus the union of proba-

bilities that the species will be absent at each of the m fine-grain grid

cells. Because we are treating the fine-grain absences as independent

events, the union probability of fine-grain absences equals to the prod-

uct of individual probabilities. Hence, we get:

Pi ¼ 1�
Ym
j¼1

ð1� pijÞ eqn 5

where 1 � pij is the probability of absence of the species in the fine-

grain cell jwithin a coarse-grain cell i. SeeMacKenzie et al. (2006) and

Marcer et al. (2012) for other examples of use of eqn 5 in the field of

SDM. The code for Model 4 in the BUGS language is provided in

Appendix S1.

Model 5 –HBMwith downscaled occupancy

This model builds upon Model 4 (it uses eqns 2, 4 and 5) to link fine-

grain probabilities of occurrence to fine-grain environment. However,

it also incorporates an estimate of fine-grain occupancy from the

power-law model of Kunin (1998) as a further constraint. We thus

obtain two kinds of occupancy estimates. The first is kPL, which is the

fine-grain occupancy estimated by the power-law model (see the next

section for details). The second is kB, which is fine-grain occupancy esti-
mated using the summed pij:

kB ¼
Xn
i¼1

Xm
j¼1

pij eqn 6

where n is the number of all coarse-grain grid cells in the studied region

andm is the number of fine-grain grid cells within one coarse-grain grid

cell (n = 46 and m = 9 in our dataset; see below). To apply the con-

straint on model occupancy, we use kPL as data whilst kB is estimated

during the model fitting process. We link the separate provenances by

assuming that kPL (data) is an outcome drawn from Poisson distribu-

tionwithmean kB:

kPL �PoissonðkBÞ: eqn 7

We used Poisson distribution here as it is the simplest way to describe

mean and variation in the number of occupied fine-grain grid cells – it

constrains kB to be reasonably close to kPL but does not require it to be

identical. The code for this model in the BUGS language is provided in

Appendix S2.

Model 6 –HBMwith true occupancy

This model is nearly identical to Model 5. The only difference is that,

instead of using of the occupancy estimated by the power-law model

p1,1 =
0·5

p1,2 =
0·01

p1,4 =
0·2

p1,5 =
0·01

p1,7 =
0·03

p1,8 =
0·01

p2,1 =
0·01

p2,2 =
0·01

p2,3 =
0·01

p2,4 =
0·01

p2,5 =
0·02

p2,6 =
0·01

p2,7 =
0·01

p2,8 =
0·01

p2,9 =
0·01

)2,1( ijijij envienvif=P

Coarse grainFine grain

p1,3 =
0·4

p1,6 =
0·02

p1,9 =
0·01

P1 = 0·78
Y1 = 1

(species 
present)

P2 = 0·18
Y2 = 0

(species 
absent)

−− ∏
m

j = 1

j = 1

ijiji envienvifBernoulliY ))2,1(1 (1~

( )PBernoulliY ~

∏ −−
m

iji )p(=P 11

( )ii PBernoulliY ~

Fig. 3. Rationale of the hierarchical Bayesianmodelling approach used in this study. Fine-grain probabilities pij are linked to fine-grain environment

(envi1ij and envi2ij) by function f(), which is the logistic function (eqn 2) in this particular study. However, f() can be any function, and hence the

approach is flexible. Coarse-grain probabilities Pi are then calculated from the fine-grain probabilities pij using eqn 5. The observed coarse-grain

occurrences (Yi) are a result of a random draw from Bernoulli distribution with probability Pi. Equation in the box is the integrated solution of the

relationship between coarse-grain occurrence data, fine-grain probabilities of occurrence and fine-grain environment. The ultimate goal is to find the

posterior distribution of the parameters in f(), which is carried out byMCMC sampling.
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(kPL), we use the true occupancy observed at the fine grain, which we

call kTRUE and hence:

kTRUE �PoissonðkBÞ: eqn 8

This model explores the ideal, but rare, situation in which we have a

perfect estimate of the fine-grain occupancy. This model is used here to

assess the relative performances of Models 4 and 5. The implementa-

tion of the model in the BUGS language is provided in the Appendix

S2.

ESTIMATION OF FINE-GRAIN OCCUPANCY BY THE

POWER-LAW SCALE-AREA RELATIONSHIP

Here, we describe the way we calculated kPL (eqn 7) using a simple

power-law scale-area relationship. We assume that the relationship

between the logarithm of area of occupied grid cells (convertible to

occupancy) and the logarithm of grain (i.e. area of a single grid cell) can

be described by a linear function (Fig. 2d). This is equivalent to the

power-law model of self-similar (fractal) spatial distribution of occu-

pied grid cells (Kunin 1998). In the fractal model, the area of occupied

grid cells decreases at a constant rate towards finer grains. Hence, we

can parameterize the model at coarse grains and then use it to predict

occupancy at fine grain. For this first demonstration, we chose the

power-law model for its simplicity and transparency, but acknowledge

that alternative, more complex scale-area models are available that

may ultimately offer stronger fits (see e.g. Azaele, Cornell & Kunin

2012).

To fit the power-law model, we used the coarse-grain (Fig. 2b) and

super coarse-grain data (Fig. 2c) and then extrapolated the log–log

linear regression down to the fine grain to predict the fine-grain occu-

pancy (Fig. 2d). Additionally, we explored the Poisson (Wright 1991)

and negative binomial scale-area models (He & Gaston 2000). These

models were fitted using stochastic global optimization of squared log

errors (Azaele, Cornell & Kunin 2012). However, as there were only

two data points in each species to fit the models, we had difficulties to

find a stable set of parameters. Therefore, we only report results based

on the power-lawmodel.

MODEL FITTING

We used maximum likelihood approach to find parameters of Models

1–3 and their 95% confidence intervals (function glm() in R, binomial

family, logit link function; R Development Core Team 2009). Some of

the nonhierarchical models (Models 2 and 3) were impossible to fit real-

istically for �20 species; they provided parameter estimates that

differed by >2 orders ofmagnitude from the referenceModel 1 (because

of the complete separation problem; see Albert & Anderson 1984). We

excluded these species from the analysis and do not show the results

here.

To fit Models 4–6, we used OpenBugs 3.2.1 (Lunn et al. 2009) to

estimate medians of the posterior distributions of a, b and c and

their 95% credible intervals. As an uninformative prior distribution

for a, b and c, we used normal distribution with zero mean and

variance of 100. We used three chains and 20 000 iterations from

which 10 000 were discarded as burn-in. By visual inspection in 30

species with different values of occupancy, we estimated that the

Markov Chains converged after about 1000–3000 iterations. This

quick convergence is likely due to (1) the simplicity of the model,

(2) the lack of colinearity between predictors and (3) the relatively

small data set. Roughly, running the MCMC procedure for Model

6 for a single species required about 3 min using a 2 GHz Intel®

Centrino® CoreTM Duo CPU. However, we note that for larger

datasets and more complex models, this time can increase substan-

tially. To run the procedure over all of the 127 bird species,

we used an R script and the R2OpenBUGS package. The imple-

mentation of the models in the BUGS language is provided in

Appendices S1 and S2.

MODEL EVALUATION

The goal of our model evaluation was to identify how well the down-

scaling modelling approach (Models 2–6) is able to approximate the

success (or failure) of reference Model 1. Doing the comparison to the

fine-grain reference model rather than to the empirical fine-grain data

offers clearer and more detailed differences between the models, espe-

cially in species with weaker performance of the fine-grained models

(i.e. weak association between species’ fine-grain probability of occur-

rence and the two environmental variables). Our goal was thus to iden-

tify the modelling approach (Models 2–6) that gives the highest

concordance with the referenceModel 1.

We measured the discrimination capacity of each of the models by

AUC (area under receiver operating characteristic curve; Liu, White &

Newell 2011), and we measured the reliability (or goodness-of-fit) of

the models using R2 (using formula in Ash & Shwartz 1999 and Liu,

White & Newell 2011). Note that because we are comparing binary

with continuous data, the expectedR2 will be lower thanwhen compar-

ing two continuous variables, and it will be correlated with prevalence

(occupancy) of a species (Ash & Shwartz 1999). AUC andR2 were cal-

culated using the predicted fine-grain probabilities of occurrence and

the actual fine-grain presences or absences (Liu,White &Newell 2011).

We calculated Δa, Δb, Δc, ΔAUC and ΔR2 by subtracting the estimated

parameter value for Models 2–6 from the value of Model 1. The closer

the Δ values to 0 the better was the concordance of Models 2–6 to the

fine-grain reference Model 1. We were also interested in how species

occupancy can influence the downscaling accuracy. Hence, we plotted

all of the diagnostic Δ measures mentioned above against the species’

coarse-grain occupancy (and we incorporated the span of the confi-

dence or credible intervals into the plots).

We performed the model evaluation separately for two sets of

species. The first set contained all of the 127 species, regardless of the fit

of the fine-grain reference Model 1. The second group consisted of 37

species with AUC > 0�85 (an arbitrary criterion) for Model 1. These

were the species for which the environmental variables and the logistic

model provided good discrimination capacity.

To evaluate the predictions across all of the species, we calculated

species richness at each grid cell as predicted by each of the six models.

The expected value of species richness in a given cell is equal to the sum

of predicted probabilities of occurrence of individual species (Storch,

Šizling &Gaston 2003; Šizling & Storch 2003; MacKenzie et al. 2006).

As the same logic can be applied to the calculation of predicted occu-

pancy, we also compared values of occupancy predicted by each of the

models.

Results

MODEL PERFORMANCE

Values of a, b, c, AUC and R2 of the six models are provided

in Table 1 and Fig. S1 – these show how well the models pre-

dict the empirical fine-grain occurrences, and they show that

all three HBMs (Models 4–6) outperform the conventional
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Models 2 and 3. The difference between performance of our

downscaling models is well illustrated in three species (Figs 4

and 5), which we selected as a representative species of low

(Peregrine Falcon, Falco peregrinus), medium (Purple Finch,

Carpodacus purpureus) and high (RockWren, Salpinctes obsol-

etus) occupancy. Both of the conventional Models 2–3 (direct

method and point sampling) systematically overestimated the

fine-grain probabilities of occurrence (Figs 4 and 5), which

was mostly caused by unrealistically large values of parameter

a (represented by Δa in Fig. 6). They were also less reliable

than Model 1 (represented by ΔR2 in Fig. 6), but produced

unbiased values of b, c and AUC (Fig. 6, Fig. S2). Impor-

tantly, the span of 95% confidence intervals of parameter a did
not correspond well with the accuracy of the estimated a
(Fig. 6).

In contrast to the conventional methods, our HBM models

4–6 produced nearly unbiased estimates of a, b, c, AUC and

R2 relative to Model 1 (Fig. 6, Fig. S2). Some deviations were

apparent in species with extremely high or low occupancy

(under/overestimated a, and lower AUC than Model 1)

(Fig. 6, Fig. S2). These deviations were less severe than in the

conventional Models 2–3 (Fig. 6), and the uncertainty was

captured, as is evident in the larger span of the 95% credible

intervals for low-occupancy species. Model 6 showed little

systematic deviation from Model 1 and generally performed

best (Fig. 6, Fig. S2).

The accuracy of some of the downscaling methods (espe-

cially Models 2, 3 and 5) was dependent on the occupancy

of the species (Fig. 6; Fig. S2). All methods tended to overes-

timate parameters a in widespread (i.e. high occupancy)

species and tended to underestimate a in species with low

occupancy (Fig. 6, Fig. S2). Finally, our results hold for both

the complete set of 127 species and for the subset of 37

species with AUC > 0�85 of the fine-grain reference Models 1

(Fig. S2).

INCORPORATION OF DOWNSCALED OCCUPANCY

Our efforts to downscale occupancy (kPL) gave mixed results.

Although the downscaled occupancy estimated from the

power-lawmodel was highly correlated with the true fine-grain

occupancy (see legend of Fig. 7 for R2), it tended to over-

predict the true occupancy (Fig. 7). The incorporation of the

downscaled occupancy from the power-law model (kPL) did

–4 –2 0 2 4

0·
0

0·
2

0·
4

0·
6

0·
8

1·
0

–3 –2 –1 0 1
envi1

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

 o
cc

ur
re

nc
e

envi2

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Fig. 4. Example of the six models predicting occurrences of the purple finch (Carpodacus purpureus, Gmelin, 1789). Both direct approach (Model 2)

and point sampling (Model 3) over-predict the occurrence probabilities when compared with Model 1. All three hierarchical Bayesian modellings

give predictions that are in much better concordance withModel 1. Also, note how incorporation of the occupancy (Models 5 and 6) improved the

prediction.

Table 1. Median values ofR2, AUC, a, b and c for the six downscalingmodels assessed and applied to distributions of birds in SanDiego

All 127 species 37 species withModel 1 AUC > 0�85

R2 AUC a b c R2 AUC a b c

Model 1 – reference fine-grainmodel 0�078 0�757 �2�127 �0�05 �0�213 0�374 0�904 �2�814 �0�146 0�024
Model 2 – direct approach �1�139 0�753 0�176 �0�096 �0�178 �0�615 0�883 �1�353 �0�686 0�573
Model 3 – point sampling �1�016 0�755 0�179 �0�117 �0�152 �0�556 0�884 �0�95 �0�477 0�356
Model 4 –HBM, only environment 0�016 0�755 �2�71 �0�055 �0�261 0�307 0�884 �4�311 �0�69 0�158
Model 5 –HBM, downscaled occupancy �0�0013 0�757 �2�065 �0�084 �0�308 0�27 0�882 �4�244 �0�797 �0�069
Model 6 –HBM, true occupancy 0�042 0�755 �2�443 �0�094 �0�282 0�307 0�882 �4�13 �0�792 0�116

The medians were calculated across species. Note that the R2 values of Models 2–3 can be lower than 0 – a problem that arises when a regression

model is fitted to different data than those used to parameterize themodel.R2 (Ash& Shwartz 1999) andAUC (Liu,White &Newell 2011) were cal-

culated using the fine-grain probabilities predicted by themodels and true fine-grain presences/absences.

HBM, hierarchical Bayesianmodelling.
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not improve performance of Model 5 over Model 4 (Fig. 6;

Fig. S2). Note that Model 4 did not use occupancy estimates

at all.

PREDICTED OCCUPANCY AND SPECIES RICHNESS

Model 1 predicted occupancy values almost perfectly

(Fig. 8b), which is unsurprising given that logistic regression

minimizes the difference between predicted and observed occu-

pancy by definition. Nevertheless, Model 1 had problems with

reproducing realistic patterns of species richness (Fig. 8a, Fig.

S3). It failed to produce the very high and very low values of

richness (Fig. 8a), and it generally smoothed out the species

richness maps (Fig. S3). Conventional Models 2 and 3 consis-

tently over-predicted both species richness and occupancy

when compared with Model 1 (Fig. 8). On the other hand, all

three HBM models produced species richness and occupancy

patterns similar to Model 1 (Fig. 8, Fig. S3). Model 5, which

incorporated the occupancy estimated from the fractal model

(already overestimated; Fig. 7), overestimated both occupancy

and species richness, which is expected based on model perfor-

mance for individual species. Model 4 produced systematically

unbiased estimates of both richness and occupancy in compari-

sonwithModel 1 (Fig. 8).

Discussion

Overall, the HBMs showed good performance in estimating

unbiased, fine-grain species occurrence probabilities. This

result is encouraging for a more widespread estimation of

species distributions at grains finer than available species

occurrence data, with benefits for ecology and conservation.

Furthermore, the flexible nature of HBMs opens the possi-

bility of combining species data collected at multiple grains

(i.e. point data, coarse gridded data and species lists) to make

fine-grain predictions.

RELATIVE PERFORMANCE OF DOWNSCALING METHODS

Our dataset had limited spatial extent and explored a relatively

narrow range of scales. Yet, even this constrained setting was

sufficient to unveil striking differences in model performance.

TheHBMapproach yielded downscaled occurrence probabili-

ties that were in better concordance with the fine-grain

reference model than the conventional downscaling models.

The differences were primarily in the values of parameter a,
that is, the ‘intercept’ of the logistic regression for binary

response variables and in the R2 values (the reliability of the

model). If we plot the occurrence probabilities against environ-

ment (as in Fig. 4), then any change of a moves the whole

sigmoidal curve along the environmental x-axis whilst the

overall shape of the curve is preserved. This causes severe

distortion of the predicted probabilistic maps (as in Fig. 5) and

decrease of the R2. On the other hand, it does not affect the

AUC of the model (the discrimination capacity), which in

principle only correlates rank of probabilities in grid cells with

presences and absences. This has important implications for

SDM. Although the conventional methods predict shifted

probabilities of occurrence, the relative rank of these probabili-

ties is similar to the rank produced by our HBMs (as shown by

the AUC values). It implies that conventional downscaling

methods can produce acceptable binary presences or absences

when used with an appropriate probability threshold

(Liu et al. 2005; Allouche, Tsoar & Kadmon 2006; Bombi &

D’Amen 2012). However, in practice, there is no straightfor-

ward way to estimate such a threshold without a (fine-grain)

evaluation dataset. Conceivably, point records could be joined

to the fine-grain grid and then used for thresholding, but point

Model 1
Reference 
fine-grain model

Model 2
Direct approach

Model 3
Point sampling

Model 4
HBM 
Only environment

Model 6
HBM
True occupancy

Model 5
HBM 
Downscaled 
occupancy

Predicted
probability of

occurrence
1

0

Rock Wren (Salpinctes obsoletus)

Purple Finch (Carpodacus purpureus)

Peregrine Falcon (Falco peregrinus)

Fig. 5. Example of the six models predicting occurrences of three bird species with different occupancy. Both direct approach and point sampling

over-predict comparedwithModel 1, whilst the three hierarchical Bayesianmodellings offer better concordance.
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data are not always available or their tendency for false

absencesmaymake their use futile.

One of the advantages of our method set in a logistic regres-

sion framework is that it produces actual probabilities of

occurrence (with appropriately quantified uncertainty), which

allows us to avoid the arbitrary conversion to binary pres-

ences/absences in many ecological applications. The raw prob-

abilities can be used to calculate accurate estimates of species

richness and their confidence intervals (Storch, Šizling &

Gaston 2003), to calculate area occupied by a given species at a

given grain (Šizling & Storch 2003; MacKenzie et al. 2006),

to calculate threshold-free estimates of the most probable

range boundaries, to calculate information-rich beta diversity

measures such as Bray–Curtis distances or to perform accurate

ordination analyses of community composition based on these

distances (Legendre &Legendre 1998).

THE ROLE OF OCCUPANCY

Several important issues related to occupancy emerged in

our study. First, some parameters of the downscaled logistic

function tended to be systematically biased in species with

extremely low and high occupancy. At the moment, we do

not have a firm explanation for this, and we also could not

find one in the current SDM literature, which tends to be

focused on evaluation of model predictions not parameters.
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We need to raise this as a remaining concern and as some-

thing that will require further research. However, the good

news is that the biased model parameters of the HBMs

(e.g. Δa 6¼ 0) were also associated with higher uncertainty

(represented by larger circle symbols in Fig. 6), especially in

less prevalent species. In contrast, the direct approach and

point sampling associated the biased parameters with low

uncertainty (indicating high confidence in an incorrect

value), which we consider to be a serious flaw.

The second issue is related to the power-law scale-area rela-

tionship. We had expected that the power law would perform

poorly, especially in species with very high occupancy (here

measured at the 15 9 15 km grain), because they are close to

reaching their ‘saturation scale’ of 100% of occupied grid cells

(Halley et al. 2004; Azaele, Cornell & Kunin 2012). Note that

we had already excluded species that occupied more than 44

(of 46) 15 9 15 km grid cells. However, we found that, in

accordance with previous work (Kunin 1998; He & Gaston

2000; Azaele, Cornell & Kunin 2012), the power-law fractal

model overestimated fine-grain occupancy in all species,

regardless of their actual occupancy or whether the occupancy

reached saturation at the coarsest grain. One may argue that

the inclusion of a primitive and inaccurate scaling relationship

of occupancy is still better than ignoring the scaling relation-

ship completely. However, what we found is that, whilst

accurate estimates of fine-grain occupancy can improve down-

scaling performance (as in Model 6), not modelling fine-grain

occupancy is superior to use of inaccurate (overestimated)

occupancy from the power-law model. Nevertheless, there are

new promising methods being developed to downscale occu-

pancy such as the shot noise Cox processes (Azaele, Cornell &

Kunin 2012), and we expect that larger datasets may facilitate

more accurate estimates of fine-grain occupancy and signifi-

cantly improve the performance of HBM downscaling (as was

the case of ourModel 6).

Finally, we can regard our HBMs, and especially Model 4,

as a stand-alone method to predict fine-grain occupancy

(similarly to the power-law scale-area relationship). Model 4

uses logistic regression, which, by definition, fits the sigmoidal

curve so that the sum of predicted probabilities is identical to

the number of occupied grid cells. This makes it the first choice

model in any environmentally informed attempts to downscale

occupancy. Whilst Kunin (1998) set the power-law model as

the most user-friendly (although unrealistic) model to down-

scale occupancy with no environmental data at hand, we sug-

gest that HBMs based on logistic regression can be used as the

baseline for developing methods to downscale occupancy that

do take environment (i.e. species niches) into account (e.g.

sensu Jiménez-Alfaro, Draper&Nogués-Bravo 2012).

PROSPECTS FOR HBMS FOR CROSS-SCALE

PREDICTIONS OF BIODIVERSITY

We suggest that the flexible nature of the Bayesian modelling

framework brings exciting prospects for addingmore complex-

ity to the models. Obvious additional elements to incorporate

include spatial autocorrelation, for example, in the form of

conditional autoregressive models (CAR; Latimer et al. 2006).

This would help in addressing the independence between grid

cells, which we assumed both at fine grain and coarse grains

(e.g. in eqn 5).

The sort of HBMs we present could also be extended to

include expert knowledge of species habitat requirements

(McPherson, Jetz & Rogers 2006; Jetz, Wilcove & Dobson

2007; Kearney & Porter 2009; Niamir et al. 2011; Rondinini

et al. 2011), more complex associations between environmen-

tal variables and species presence (e.g. using unimodal rather

than sigmoidal species responses curves; McInerny & Purves

2011) or different types of species occurrence data, such as spe-

cies lists from unequal-sized survey areas. In the future, an

incorporation of species abundances or population dynamics

(Pagel & Schurr 2012) and joint modelling of multi-species

distributions (Ferrier & Guisan 2006) offers additional poten-

tial for improved downscaling predictions. There may also be

ways to adjust other existing SDMmethods (other thanGLM)

into the HBM framework. An obvious example would be

generalized additive models (GAM; Guisan, Edwards &

Hastie 2002), which can be easily extended to incorporate

HBM as they are parametric and produce actual probabilities

of occurrence. Incorporating our HBM approach for methods

such as regression trees orMaxEnt (Elith et al. 2006) would be

amore difficult challenge.

Having outlined all of these prospects, we also note that

our HBM approach can be computationally demanding.

With increasing complexity of the model, increasingly fine
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Fig. 7. Ability of the power-law scale-area model (as demonstrated in

Fig. 2d) to predict occupancy kPL (i.e. number of occupied grid cells) at

the fine grain for 127 bird species. Note that this figure does not repre-

sent performance of the actual downscaling model (Models 1–6).
Dashed line is the line of identity (y = x).R2 of the identity line is 0�843.
Linear regression (solid line) of downscaled occupancy against true

occupancy (in log–log, as plotted) gives R2 of 0�937, intercept of 0�098
(±0�04 SE), slope of 1�052 (±0�024 SE). Clearly, the power-law model

over-predicted occupancy in most of the species, and regardless of

whether they reached the saturation scale (100% of occupied grid cells

at the coarsest grain).
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grain but large-extent datasets, the computational require-

ments increase dramatically. This may limit the use of our

method primarily to regional rather than continental or

global analyses. On the other hand, there is an increasing

availability of high-performance cluster computing and asso-

ciated techniques, including running multiple MCMC chains

on separate CPUs, and within-chain parallelization (Chakr-

aborty et al. 2010), which may enable the use of HBMs for

large spatial extents.

In contrast to conventional methods, the HBM approach

provides a full posterior distribution for the estimated prob-

abilities of occurrence in each fine-grain grid cell that incor-

porates the uncertainty introduced by the downscaling

procedure. Although we do not go into such details here,

these distributions can be summarized to answer more spe-

cific ecological questions whilst fully accounting for model

uncertainty. For example, the range size for a species, the

probability that two (or more) species co-occur or the

expected species lists for any arbitrary region could each be

estimated with 95% (or other) credible intervals. Finally,

the approach does not require that the fine-grain cells be

perfectly nested within the coarser cells, and thus, it is pos-

sible to use a HBM to incorporate different types of species

occurrence data, such as species lists from any specific

regions.

Understanding the spatial distribution of species is critical

for understanding and conserving ecological and evolutionary

processes, but our knowledge is geographically biased and

orders of magnitude coarser than available fine-grain environ-

mental datasets (Jetz, McPherson & Guralnick 2012). In this

study, we have illustrated a novel framework for estimating

species occurrence probabilities at fine grains by combining

Fine-grain species richness predicted by Model 1
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Fig. 8. (a) Fine-grain occupancy (i.e. number of occupied fine-grain grid cells) values predicted byModels 2–6 plotted against occupancy predicted

byModel 1. Each point is one species. (b) Species richness predicted byModels 2–6 against species richness predicted byModel 1. Each point is a grid

cell (Fig. S3). We calculated occupancy and species richness by summing up the mean probabilities predicted by each model (Storch, Šizling &Gas-

ton 2003; MacKenzie et al. 2006). Dashed line is the line of identity; solid line is ordinary least-squares regression prediction. The dashed line is not

visible in panel b) inModels 2 and 3 species richness is over-predicting bymore than 10 species. InModels 4–6, the predicted lines cluster around two
lines, which are caused by different responses of species richness to the two environmental variables. See Fig. S4 for detailed explanation.
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fine-grain environmental data with coarse-grain species occur-

rence thus improved our fine-grain understanding of species

distributions.
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