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We test whether temporal change in species richness (DS [%]) is scale-dependent, using data on hoverflies from the UK and
the Netherlands. We analysed DS between pre-1980 and post-1980 periods using 5 grid resolutions (10�10, 20�20,
40�40, 80�80 and 160�160 km). We also tested the effect of data quality and of unequal survey periods on DS
estimates, and checked for spatial autocorrelation of DS estimates. Using data from equal survey periods, we found
significant increases in hoverfly species richness in the Netherlands at fine scales, but no significant change at coarser scales
indicating a decrease in beta diversity. In the UK, DS was negative at fine scale, near zero at intermediate scales, and positive
at coarse scales, indicating that the degree of spatial beta diversity increased between the time periods. The use of unequal
survey periods (using longer periods in the past to compensate for lower survey intensity) tended to inflate past species
richness, biasing DS estimates downwards. High data quality thresholds sometimes obscured dynamics by reducing sample
size, but never reversed trends. There was little spatial autocorrelation of DS, implying that local drivers (land use change or
environmental noise) are important in dynamics of hoverfly diversity. A second, sample agglomeration approach to
measure scaling resulted in greater noise in DS, obscuring the NL pattern, while still showing strong evidence of fine-scale
richness loss in the UK. Our results indicate that explicit considerations of spatial (and temporal) scale are essential in
studies documenting past biodiversity change, or projecting change into the future.

Ecological patterns are often dependent on the spatial scale
of observation. This scale-dependence has recently attracted
considerable attention (Storch et al. 2007). Recent studies
have demonstrated that species distributions (Kunin 1998),
density dependence (Jarosik and Lapchin 2001, Gunton
and Kunin 2007, 2009), extinction risk (Hartley and Kunin
2003), ratios of native/exotic species (Davies et al. 2005) or
migration and colonization rates (Menendez and Thomas
2000, Englund and Hamback 2007) manifest themselves
differently across spatial scales, and it has long been
appreciated that species richness is intrinsically scale-
dependent (Arrhenius 1921, Rahbek and Graves 2001,
Whittaker et al. 2001, Rahbek 2005). Such scale-specificity
may be attributed to the scaling properties of environmental
factors, biotic processes, and their interaction, which
together result in differences in relative importance of
various factors at different scales (Shmida and Wilson 1985,
Wiens 1989). Species richness, for example, may be
primarily driven by habitat structure and biotic interactions
at a local scale, but climatic influences are thought to be
more important at regional or continental scales (Willis and
Whittaker 2002). Moreover, some factors, such as produc-

tivity, may show effects on biodiversity that differ in
strength or even direction at different scales (Chase and
Leibold 2002).

To date, most studies looking at patterns of biodiversity
at multiple spatial scales have focused on static diversity
distributions, i.e. examining a single snapshot of species
richness pattern at a specific point in time (but see Hartley
and Kunin 2003). However, there is increasing evidence of
substantial temporal changes in species diversity and
distributions � mostly alarming declines (Warren et al.
2001, Thomas et al. 2004, Biesmeijer et al. 2006, Hickling
et al. 2006), but also increases due to climate impacts and
human-assisted dispersal (e.g. of alien species; Preston et al.
2002, Stohlgren et al. 2003). Such reports typically assess
only one spatial scale of observation.

While there is little direct evidence that changes in
diversity are scale-dependent, there are reasons to suspect
that change will be scale-dependent. The main drivers of
biodiversity change are all arguably scale-specific in their
likely impacts. Habitat fragmentation and subsequent
metapopulation dynamics, for example, tend to result in
the disproportionate loss of small, isolated populations
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(Hanski 1999). Loss of such isolates involves substantial
area loss at coarse scales, but relatively little loss at fine scales
(as the patches lost are small). Climate change results in
both range expansions and contractions, but evidence to
date suggests that these two effects display strikingly
different distributional scaling (Wilson et al. 2004, Pocock
et al. 2006); ranges tend to expand in a spatially cohesive
fashion (involving a substantial fine-scale gain as coarse-
scale areas are colonised), but leave behind scattered
populations as they contract (causing little loss at coarse
scale despite substantial fine-scale losses). The impact of
invasive alien species is also predicted to be scale-dependent
(Rosenzweig 2001, Stohlgren et al. 2006); invasions may
reduce very fine scale diversity (in some cases) and global
scale diversity (if they lead to the extinction of native
populations), but they almost invariably increase total
diversity at intermediate spatial scales.

The scale-dependency of biodiversity change between
two time periods can be described as a change in the slope
(one metric of b diversity) of the species�area relationship
(SAR) over time (Fig. 1). However, any attempt to
formulate an a priori prediction about the precise scale-
dependency of diversity changes would need either complex
models of range dynamics or scenario-based projections
(Thuiller et al. 2005, Jetz et al. 2007), in which the relative
importance of different drivers of change was known. This
is beyond the scope of our study as we restrict our goal to
merely ask whether and how are changes in biodiversity
scale-dependent.

The primary goal of this paper is to test the hypothesis
that spatial scale influences the observed patterns of
biodiversity change. We use two extensive data sets on
hoverflies (Insecta: Diptera: Syrphidae) and assess the
change during the second half of the 20th century in the
NL and the UK at five grain resolutions (scales): 10�10,
20�20, 40�40, 80�80 and 160�160 km. Our sec-
ondary goal was to estimate the level of spatial autocorrela-
tion of biodiversity change. Strong autocorrelation would
indicate presence of a common factor influencing biodi-
versity at large scales (e.g. climate; Diniz-Filho et al. 2003),
whereas weak (or lack of) autocorrelation would point to
the importance of local factors (e.g. land use change) or to
the presence of strong fine-scale environmental or demo-
graphic noise. Additionally, we assessed the potentially
confounding effect of data quality on biodiversity change.
Most studies of biodiversity change rely on historic data
that tend to consist of species records collected by a range of
different recorders using different (rarely standardized)
methods over extensive time periods. This may result in
differences in quality between historic and current datasets.
To address this problem, we performed our analyses using
different threshold levels of data acceptability (i.e. numbers
of records needed per observation unit for inclusion in the
analysis), and different periods of data accumulation.

To our knowledge, this is the first comprehensive
attempt to deal with dynamic aspects of biodiversity over
multiple spatial scales.

Material and methods

The data sets

We obtained the British hoverfly data from the National
Biodiversity Network (publicly available at <www.searchnbn.
net>) which is largely based on the Hoverfly Recording
Scheme (Ball and Morris 2000). For The Netherlands we
used data held by the European Invertebrate Survey, which
includes data from the Netherlands Syrphidae recording
scheme which is a collaboration between the European
Invertebrate Survey � the Netherlands, the Netherlands
Youth Federation for the study of Nature (NJN) and the
Diptera division of the Netherlands Entomological Society
(Reemer et al. 2009). Both UK and NL data consist of field
observations made by voluntary recorders and of data
extracted from collections and literature. Each database
record corresponds to one identified individual. Numbers
of records in each of the data sets are given in Table 1.
We adjusted taxonomic nomenclature in both databases
according to the Syrph the Net database (Speight and
Castella 2006).

We are explicit about the fact that even such extensive
datasets have pitfalls when it comes to estimating temporal

Figure 1. Illustration of how relative temporal change of species
richness (DS) in time can depend on scale. Two lines in each plot
represent two SARs measured in subsequent periods of time. Any
scale-dependency of DS is caused only by change in the slope of
SAR (which is b diversity). (a) DS is independent on spatial scale.
(b�c) DS equals zero at one scale but is different from zero (either
positive or negative) at the other scale. (d) DS equals zero at
intermediate scale and differs from zero at large and small scales
(DS have opposite directions at large and small scales). Note that
we show the linear log-log SARs only for illustration. Scale-
dependent DS will emerge not only when the two SARs differ in
slope, but also when they differ in shape (e.g. when one is linear
and the other non-linear in log-log). Such situation will always be
interpretable as a change in b diversity, although not necessarily at
all spatial scales. See also Supplementary material Fig. S1 for rough
estimation of SARs for the UK and NL data.

Table 1. Time periods used to split the data and number of records
in each period.

Time periods Number of
records � NL

Number of
records � UK

1900�1979/1980�2005 78 860/316 042 51 965/294 609
1954�1979/1980�2005 61 938/316 042 37 814/294 609
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biodiversity trends. First, there are fewer records from the
past in both countries (Table 1, Supplementary material
Fig. S1, S4). We controlled for this inequality by using
rarefaction (see below). Second, we detected slight temporal
increases in the of proportion of common species in the
data (Supplementary material Fig. S2). This may be caused
either by change in behaviour of recorders, or it can be
a real trend. We argue that if this bias is due to recorders,
than it would itself (at least in the Netherlands) lead to the
opposite trend to what we report here. Third, even if the
recorders had not changed their behaviour, this kind of data
would always tend to under-represent common species
because some amateur recorders might focus on rare and
‘‘attractive’’ species. However, if this kind of bias did
not change over time, the comparison of temporal change
in biodiversity would be legitimate (Gryntes and Romdal
2008).

Estimation of species richness change

To examine biodiversity change, we contrasted two time
periods. We split the datasets to create pre-1980 and post-
1980 (including 1980) record sets. Although splitting
the data at 1980 is arbitrary, it allowed us to compare the
results with previous work (Biesmeijer et al. 2006). Both of
our UK and the Dutch data sets span from �1900 to
2005; if we split them to pre- and post-1980, then the two
periods are of unequal lengths (ca 79 and 25 yr). This may
have advantages, as it can partially compensate for the
generally lower recording effort in the past. However,
it may be argued that the use of unequal sampling periods
could bias our results because of the species�time relation-
ship (White 2007) � the increase in species numbers at a site
with increasing monitoring period. However, discarding all
data from the first half of the 20th century would limit our
temporal scope and restrict the analysis to relatively short-
term changes. Hence, we did our analyses for two time
splits: 1) 1900�1979/1980�2005 (unequal time periods as
used in Biesmeijer et al. 2006 and 2) 1954�1979/1980�
2005 (equal time periods as used in Hickling et al. 2006).

Pre-1980 and post-1980 record sets were not directly
comparable because of the uneven number of records.
We accounted for that separately within each grid cell
by performing individual-based rarefaction (Gotelli and
Colwell 2001) on the data from the period with higher
number of records, allowing us to ‘‘rarefy’’ down to the
number of records in the other survey period. We used one
database record as an equivalent of one ‘‘individual’’
(see above and Gotelli and Colwell 2001). We then
expressed the temporal change of species richness (DS) in
each grid cell as

DS � (Spost 980�Spre1980)=Spre1980�100 (1)

where Spost1980 and Spre1980 are values of species richness in
the period before and after 1980 respectively (one of the S
values is always obtained through rarefaction). We calcu-
lated the 995% confidence limits of DS within each grid-
cell using the formulas by Heck et al. (1975) (see also
Biesmeijer et al. 2006).

To show the overall trend of DS in a set of grid cells
we adopted a meta-analytical approach and calculated the

weighted bootstrapped median of the DS values and 995%
confidence intervals of the bootstrapped median (10 000
resamplings) (Gurevitch and Hedges 1999). We used the
median rather than mean because distributions of DS were
sometimes skewed. We weighted values of DS by the inverse
of the span of the 95% confidence limits of DS. This put
higher weights onto grid cells with relatively high numbers of
records in both periods and/or with equivalent numbers of
records in the two periods, whereas grid cells with a low
number of records in one of the periods and/or very uneven
sampling efforts were down-weighted. The procedure allowed
for a more powerful analysis of species richness change than
previously used in Biesmeijer et al. (2006), who used the
rather conservative ‘‘vote counting’’ approach (Gurevitch and
Hedges 1999), i.e. a comparison of the number of cells where
diversity has increased/not changed/decreased.

When working with gridded biodiversity data there is
always the problem of spatial dependence of data (spatial
autocorrelation; Fortin and Dale 2005). We measured the
degree of spatial autocorrelation at the first distance class
(correlation of DS values in two adjacent grid cells) by
calculating the Moran’s I (Fortin and Dale 2005) for data
with the minimum number of 100 records per grid cell
(see below for analysis of the role of recording level).
We also tested significance of Moran’s I by permutation test
(199 permutations).

The role of spatial scale

To investigate whether spatial scale affects the observed
patterns of DS, we carried out analyses using 10�10,
20�20, 40�40, 80�80 and 160�160 km grid resolu-
tions. Rather than using a regular grid, we positioned the grid
cells so that we obtained as many cells as possible at each
spatial scale. We excluded all grid cells with B75% of their
area covered by grid cells of the 10�10 scale (in most cases,
cells over the sea). Sometimes the grid cells overlapped the sea
but it was still possible to compensate the lost of mainland
area by shifting or elongating of the grid cells to other
directions. In such cases we attempted to keep the shape as
closer to a square as possible. While greatly elongated
sampling units are expected to increase species richness
somewhat (Kunin 1997), the small deviations in shape used
here would be expected to have negligible effects, which
should be more than offset by the advantage of making cell
land area more equal than would have otherwise been
possible.

When using this area-based definition of scales the extent
of the data is not the same at all scales because different sets
of grid cells meet our criteria. To make sure that the
observed patterns of DS are robust to this we conducted
a supplementary ‘‘agglomerative’’ analysis in which the set
of focal samples remained constant across scales of analysis.
We began with the set of high quality 10 km grid cells
(�100 records, not more than 10 fold difference in the
number of records in the two time periods and the ratio of
records/number of species higher than 1.5). After compar-
ing change in that sample itself (level 1), we combined pairs
of nearest-neighbouring cells, and repeated the analysis
(level 2). We continued by combining neighbouring pairs
to create sets of 4 grid cells (level 3) and so on until
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we grouped the whole set of grid cells together into a single
one (level n). For each of these levels we evaluated the DS by
the same way as described in the previous section.

The role of data quality

Hoverflies are among the best recorded invertebrates, and
the UK and the NL are among the best-studied regions on
Earth; nonetheless, biodiversity records are patchy and
incomplete even in these countries. At the same time, it is
unclear what constitutes a sufficient number of records for
an area to allow for adequate biodiversity comparisons.
A low cut-off (i.e. including cells with few records) would
ensure the inclusion of many grid cells in the analysis, but
does so by including sites of poorer data quality and
possibly lower comparability; conversely a high cut-off
results in more robust results, but for few sites only. To test
for such trade-offs, we performed our analyses using a range
of thresholds for available records per grid cell: 10, 25, 50,
75, 100, 125, 150, 200, 250 and 300 records. Additional
inclusion criteria were: 1) a records-to-species ratio of at
least 1.5 in each of the two time periods and 2) a less than
10-fold difference in numbers of records between the two
time periods (following Biesmeijer et al. 2006). Note that
the actual records-to-species ratios were generally much
better than 1.5 (Supplementary material Fig. S3).

To summarize, we performed the analysis for all
combinations of the following factors: two time splits
(1900�1979/1980�2005 and 1954�1979/1980�2005),
10 levels of minimum number of records per grid cell and
5 spatial scales. Data processing and analyses were done
in R (R Development Core Team 2009), spatial auto-
correlation was measured in SAM 3.0 (Rangel et al. 2006)
and maps were created in ArcGIS 9.2 (ESRI).

Results

The NL data consisted of about an order of magnitude
more records per grid cell than the UK data (Supplemen-
tary material Fig. S1). In addition, in each country the post-
1980 period generally contained almost an order of
magnitude more records per grid cell than the pre-1980
period at all spatial scales (Supplementary material Fig. S1).
Numbers of grid cells that passed our data quality criteria
and that were used in the bootstrap analyses are given in
Supplementary material Table S1.

Our most important result is that the medians of the
observed DS were significantly scale dependent (Fig. 2, 3).
The 95% confidence intervals (Fig. 2, 3) clearly show that
medians of DS were at some scales significantly different
from zero (above or below) and at some scales indis-
tinguishable from zero. The nature of this depen-
dence varied between the two studied countries. In the
Netherlands, when we used the uneven time periods (1900�
1979/1980�2005) we did not observe a strong signature of
scale dependence in DS (Fig. 2, 3), with no significant shift
in richness at any scale. Using the equal time periods
(1954�1979/1980�2005), DS was found to change with
spatial scale, with a significant increase in species richness
(DS�0) found at finer scales (10�10 and 20�20 km)

(Fig. 2, 3). From the 40�40 km scale and above, there was
no significant change of species richness (DS:0).

In the United Kingdom, DS showed some evidence of
positive scale-dependence; however, this result was again
sensitive to the length of the time periods used (Fig. 2, 3).
Using the uneven time periods, species richness decreased at
finer scales (DSB0; 10�10 and 20�20 km) and at the
coarsest scale (160�160 km). At intermediate scales (40�
40 and 80�80 km) the values of DS were not significantly
different from 0 (DS:0; Fig. 2, 3). When looking at the
equal time periods we detected a significant decrease in
species richness (DSB0) at 10�10 km scale, but this
pattern depended on the minimum number of records.
There was no significant change in species richness at 20�
20 and 40�40 scales, but a significant increase (DS�0)
was shown at 80�80 and 160�160 km scales. In both
UK and the NL the variation of DS was higher at finer
spatial scales, decreasing towards coarse scales (Fig. 4, 5).

The values of DS in the Netherlands were robust to
shifting of the data quality criterion (x-axis at Fig. 2) except
for sensitivity at the 10�10 km scale. The UK results were
more sensitive to the number of records, an effect that was
most apparent at the 10�10 and 20�20 scales (Fig. 2).
The detected values of DS in both countries were also
dependent upon whether we compared even or uneven time
periods (grey versus black symbols in Fig. 2). Excluding the
pre-1954 data generally shifted DS towards positive values
(Fig. 2, 3).

When we calculated DS only over the set of high quality
10�10 km grid cells and kept the spatial extent strictly
constant at all scales (using an agglomerative approach by
merging pairs of nearest-neighbour samples) we no longer
detected any sign of scale-dependent DS in the Netherlands
(Fig. 3). However, in the UK the DS was still scale-
dependent (Fig. 3), showing a significant decrease in species
richness at fine scales (aggregation levels 1 and 2), shifting
to essentially zero change at medium to coarse scales (levels
3 to 6), at least where time periods were equal. As in the
equal-area approach, the use of unequal time intervals
generally resulted in more negative estimates of DS.

We did not detect significant spatial autocorrelation in
DS values in either the UK or NL apart from very weak
autocorrelation at 10�10 scale in NL (Moran’s I values in
Fig. 4, 5). However, the significance tests at 80�80 and
160�160 km scales may lack power due to low number of
grid cells at these scales.

Discussion

Spatial scale and biodiversity change

We found that rates of species richness change are different
at different spatial scales. Interestingly, while DS shifted
with scale in both countries, the directions of change
differed. In the Netherlands, we document fine scale species
richness gains that disappear at coarser scales, which
suggests a decrease in species turnover across space (with
lower b diversity reducing the slope of the SAR, as
illustrated in Fig. 1b, Supplementary material Fig. S1).
This suggests that the increase in fine scale species richness
in NL hoverfly assemblages has been accompanied by a
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degree of biotic homogenisation (McKinney and Lockwood
1999), which may reflect the growing dominance of a few
abundant and/or strongly dispersing species (cf. McKinney
and LaSorte 2007, Supplementary material Fig. S2).
Conversely, in the UK there were fine scale losses in
richness shifting to coarse scale gains, indicating an increase
in b diversity (Fig. 1d, Supplementary material Fig. S1).
Such shifts might be expected during times of biotic
transition, when substantial fine scale losses of native species
have not yet resulted in coarse-scale losses (Thomas and
Abery 1995). More generally, the observed shifts in
b diversity must reflect changes in the level of aggregation
of species’ distributions or changing the sizes of distribu-
tions, which may in turn reflect one of a number of
environmental drivers (increase/decrease of landscape het-
erogeneity or dispersal barriers; Storch et al. 2008). Given
the different scaling properties of different potential drivers
of change (see Introduction), it is perhaps not surprising
that no single general pattern of change across scales
emerges from our results for the two countries considered.

An alternative approach, based on the sample agglom-
eration method showed generally weaker trends overall, in

part because of greater variation around median effects �
perhaps due to variation in how far apart nearest neighbours
were. While this variation obscured any scale dependence in
NL change patterns, the strong signal of negative species
richness change at fine scales in the UK, disappearing at
coarser scales is maintained. Thus even this conservative
approach provides strong evidence of scale specificity in
biodiversity change.

Our findings of scale-specific shifts in hoverfly richness
are supported by comparing different (scale specific) studies
on other taxa. Thus for example, UK butterfly species
richness has apparently increased 7.62% at 20�20 km scale
(Menendez et al. 2006), but it has decreased 5% nationally
(Konvicka et al. 2006), which mirrors our findings for NL
(but not UK) hoverflies. Conversely, recent studies of UK
plants have found substantial declines in diversity at very
fine spatial scales (Haines-Young et al. 2003), while there
are apparent increases in diversity at coarser scales (Preston
et al. 2002), although the latter is likely due (at least in part)
to increased recorder effort.

The fact that species richness change is scale-dependent
has implications for both basic biodiversity research and for

Figure 2. Species richness changes (DS) in the Netherlands and the UK between two pre- and post-1980 periods and their dependence on
spatial scale and minimum number of records criteria (data quality). Diamonds are bootstrapped medians (10 000 resamplings). The bars
represent 95% bootstrapped confidence intervals of the medians. Comparisons based on different pre-1980 periods are indicated by
shading, with black for equal intervals (1954�1979 and 1980�2005), and grey for analyses using unequal intervals (1900�1979 and
1980�2005). The dashed line represents zero change.
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applied ecology. Most of the high-profile studies reporting
past species richness changes (Lemoine and Bohning-Gaese
2003, Biesmeijer et al. 2006, Konvicka et al. 2006,
Menendez et al. 2006) or predicting future scenarios
(Thuiller et al. 2005, Jetz et al. 2007) were performed at
single spatial scale. The scales used in these studies fall
within the range covered in our study, raising concerns
that the scale-sensitivity of dynamics documented here
might apply to them as well. Our results suggest that any
study that operates only at a single scale provides only
a partial picture of biodiversity change, and should be
interpreted with explicit reference to the particular scale of
observation.

Assessments of biodiversity change are essential in
the evaluation of conservation decisions (e.g. European
Agri-envionment Schemes) and monitoring of progress
towards biodiversity targets (e.g. CBD target of halting
biodiversity loss by 2010). Our results indicate that such
evaluations should not be restricted to a single spatial scale.
At the very least, we need to develop cross scale methods
of assessing biodiversity change (perhaps building on those
employed here), to allow the upscaling of local biodiversity
data to monitor coarser scale aspects of biotic change.
Moreover, there are good reasons to expect scale specific
effects of management on biodiversity. For example, the
introduction of an agri-environmental scheme uniformly
across a country might be expected to make habitats more
similar across space, potentially reducing b diversity, even if
it increases diversity at a local scale (a diversity). In contrast,
heterogeneity or local decision-making in the introduction
or nature of agri-environmental schemes might enhance
both a and b diversity. Knowledge of the relationship
between species diversity and spatial scale will also allow for
the design of biodiversity management schemes that

maintain or even enhance local and regional biotic
differences, and thus enhance biodiversity on many scales.

Spatial autocorrelation and spatial averaging

The absence (or near absence) of spatial autocorrelation at
most spatial scales we analyzed is remarkable (the only
exception is the very weak autocorrelation at 10�10 km
scale in the NL). Many adjacent grid cells show opposite
trends of biodiversity change (Fig. 4, 5). This means that
current biodiversity dynamics are probably not governed
predominantly by a single, globally acting factor such as
climate. Instead, it appears that site-specific factors (e.g.
local land use change) most strongly influence biodiversity
dynamics of hoverflies in our sample, or alternatively that
the signal of climate is blurred by stronger effect of
environmental noise or stochastic recorder behaviour. If
change in species richness is governed at fine scales and is
not spatially autocorrelated than it should average out as we
move from fine to coarse scales and species richness changes
should show stronger relative fluctuations at fine scales.
This is exactly what we observed in both the UK and NL
(Fig. 4, 5). Scale dependent dynamics of species richness
change would than be a consequence of spatial averaging
(Levin 1992). Finally, the changes we documented are
surprisingly large at some grid cells (Fig. 4, 5). In several
areas more than a third of the species recorded have
disappeared while an equal proportion has colonized an
adjacent cell. Though this may be a real image of very
dynamic local-scale processes (e.g. conversion to agriculture,
loss of flower-rich grasslands, afforestation), we cannot
exclude to possibility that it reflects an effect of sampling (in
spite of the efforts undertaken to control for this and using
some of the best large-scale biodiversity datasets available).

Figure 3. Species richness changes (DS) in the Netherlands and the UK between two pre- and post-1980 periods and their dependence on
spatial scale (left) and on the level of aggregation when the extent of the analyses was kept strictly constant (right; see Material and
methods for the description of the aggregation algorhitm). Here we show DS only for grid cells with �100 records, not more than
10 fold difference in the number of records in the two time periods and the ratio of records/number of species higher than 1.5.
Comparisons based on different pre-1980 periods are indicated by shading, with black for equal intervals (1954�1979 and 1980�2005),
and grey for analyses using unequal intervals (1900�1979 and 1980�2005). The dashed line represents zero change.
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Data quality affects pattern of biodiversity change

Our analyses rely on biodiversity data collected in an
unsystematic way by amateurs and professional entomolo-
gists. It is therefore important that the biases and limitations
in data of this sort be recognised (see also above). Even
though the hoverfly data used here are among the best in
the world for any invertebrate taxon or region, we find that
data quality (e.g. recorder effort and coverage) influences
the outcomes of our analyses of biodiversity change. Our
analyses reveal striking issues related to spatial and temporal
data quality.

Spatial data quality
The UK records are aggregated in fewer areas with high
sampling effort than the NL records (Supplementary
material Fig. S4). Also, the data from the UK are spread
more thinly (average number of records 1 km�2 in the pre-
1980 period is 2.33 in NL and only 0.21 in UK).

Therefore, results from the UK should be interpreted
with some caution.

As noted in the introduction, there is an intrinsic trade-
off in setting data-quality thresholds for studying biodiver-
sity trends in species records: a low threshold allows large
numbers of sites to be examined, but with low confidence in
individual results; whilst a high quality threshold provides
greater confidence in individual results, but allows fewer
sites to be assessed. Perhaps surprisingly, our results proved
relatively robust over a wide range of quality thresholds.
In the Netherlands, this may be because a large fraction of
sites had high enough data quality to be included whatever
the threshold, while in the UK (with lower record density
overall) some trends were obscured at low thresholds or
disappeared at high thresholds. Overall, a requirement for
50�100 records per 10�10 km cell (cf. Biesmeijer et al.
2006) seems to perform well, providing good resolution of
trends while retaining substantial site numbers. Our use of
the tools of meta-analysis to combine results across sites
allows even lower thresholds to be considered; in general,

Figure 4. Patterns of species richness change (DS) in the Netherlands between the 1954�1979 and 1980�2005 periods. DS was calculated
only for grid cells that met the data quality criteria (�100 records; not more than 10 fold difference in the number of records in the two
time periods; the ratio of records/number of species higher than 1.5).
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confidence intervals became narrower at lower quality cut-
offs. Too high a threshold had real costs on precision, with
expanding confidence intervals obscuring most trends.

Temporal data quality
Apart from the incomplete spatial coverage of sampling
effort there is the fact that in all analyses post-1980 data had
more records than the pre-1980 data (when the records
were summed across all grid cells). Can our results be
explained by this bias? The first step to avoid this is the

rarefaction procedure itself which is robust to differences in
sample size (Gotelli and Colwell 2001). We also showed
that the observed rate of species richness change can be
sensitive to the inequality of time periods. When the pre-
1980 period was longer than the post-1980 period, the
observed trend in biodiversity was virtually always made
more negative. Sometimes the effects were strong enough
to cause a shift in perceived diversity trends; e.g. in the
160�160 km scale UK results, DS was positive when equal
periods were compared, but significantly negative when a
longer pre-1980 period was used. This can be explained by

Figure 5. Patterns of species richness change (DS) in the United Kingdom between the 1954�1979 and 1980�2005 periods. DS was
calculated only for grid cells that met the data quality criteria (see caption of Fig. 4).
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the species-time relationship (White 2007), whereby the
total number of species found in an area grows as the time
period considered gets longer, in part due to integrating
across a wider range of climatic and environmental
conditions. The use of a longer pre-1980 period thus
artefactually expands the perceived species richness of this
initial period, and thus creates a bias towards perceiving
declines in species richness. Our results stress the impor-
tance of keeping the time periods equal in any study dealing
with biodiversity dynamics.

Future prospects

In this paper we have developed a simple framework to
analyze multi-scale patterns of biodiversity change using
data suffering from unequal and haphazard sampling
efforts. Such methods are essential, as only a tiny fraction
of ‘‘charismatic’’ taxa (in particular, birds butterflies and
vascular plants) have been subject to systematic monitoring
programmes or studied well enough for full distributional
atlases to be prepared; and only in a few western European
countries. Scattered and unsystematic point records are thus
all that is available for the vast majority of the Earth’s
species. If the preservation of biodiversity is a global and
regional priority (as enshrined in the CBD and Göteborg
targets), then we need to develop tools to allow meaningful
estimates of biodiversity change for such taxa; we hope this
paper will make a contribution in this regard. Indeed, the
multi-scale analyses explored here might well be profitably
adapted even to well-studied groups such as butterflies,
birds or plants, as little explicit information is available to
date about their dynamics at multiple scales.
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