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1  |  INTRODUC TION

Next generation sequencing technologies have revolutionized mi-
crobial ecology, revealing the extensive diversity of bacteria and 
archaea in our planet (Bates et al., 2011; Thompson et al., 2017), 
and providing insights into their ecology (Fierer & Jackson, 2006; 
Martiny et al., 2006). The popularity of amplicon sequencing, where 
a section of a universal marker gene is amplified and sequenced, has 
soared over the past decade. In soil, amplicon sequencing of the 16S 
rRNA gene has been especially useful, as soil prokaryotes remain 
largely uncultured but are extremely diverse, and perform key eco-
system functions (Steen et al., 2019).

Soil eukaryotes, including protists, worms, arthropods, fungi, 
plant roots, and others, have received comparatively less attention. 
This is due to technological difficulties associated with sampling, 

including the complexity and heterogeneity of the soil matrix 
(Orgiazzi et al., 2016). Consequently, data on the diversity and dis-
tributions of soil meso-  and macrofauna are limited (Cameron et al., 
2019), largely because the identification of these organisms is body 
size- specific, labour- intensive, and requires a deep knowledge of 
organisms’ morphologies or specific biochemistry (Orgiazzi et al., 
2016). Nevertheless, soil eukaryotes are essential to soil functions, 
as both consumers and ecosystem engineers (Thakur et al., 2019).

Amplicon sequencing has become an increasingly attractive alter-
native for the identification of soil eukaryotes (Pawlowski et al., 2020). 
Universal marker genes including the ITS region, as well as the 18S 
rRNA, mitochondrial 16S rRNA, and COI genes, have been used to 
assess the global diversity of fungi (Tedersoo et al., 2014; Větrovský 
et al., 2019), protists (Oliverio et al., 2020), nematodes, microarthro-
pods (Wu et al., 2011), and rotifers (Robeson et al., 2011) without the 
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Abstract
The soil environment contains a large, but historically underexplored, reservoir of 
biodiversity. Sequencing prokaryotic marker genes has become commonplace for 
the discovery and characterization of soil bacteria and archaea. Increasingly, this ap-
proach is also applied to eukaryotic marker genes to characterize the diversity and 
distribution of soil eukaryotes. However, understanding the properties and limitations 
of eukaryotic marker sequences is essential for correctly analysing, interpreting, and 
synthesizing the resulting data. Here, we illustrate several biases from sequencing 
data that affect measurements of biodiversity that arise from variation in morphology, 
taxonomy and phylogeny between organisms, as well as from sampling designs. We 
recommend analytical approaches to overcome these limitations, and outline how the 
benchmarking and standardization of sequencing protocols may improve the compa-
rability of the data.
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need for prior isolation of target organisms (Pawlowski et al., 2020). 
These markers allow researchers to study several groups simultane-
ously, filling gaps in soil biodiversity data and serving as the basis for 
synthesis efforts (Orgiazzi et al., 2015). Such efforts are underway 
both at regional and global scales (e.g., Bastida et al., 2020; Delgado- 
Baquerizo et al., 2020; Ramirez et al., 2014) and are becoming increas-
ingly important to ecological research (Compson et al., 2020).

As amplicon sequencing of eukaryotic markers becomes stan-
dard practice (Pawlowski et al., 2020), it is important to understand 
how the variation among taxa, sampling, and sequencing affect the 
analysis and interpretation of amplicon sequences derived from 
eukaryotic markers (Bent & Forney, 2008; Nekola & White, 1999; 
Ruppert et al., 2019; Taberlet et al., 2018). Here, we explore how the 
wide range of morphological and phylogenetic variation, as well as 

F I G U R E  1  Issues arising from variation in morphology. (a) Soil biota comprise a broad range of sizes (adapted from Swift et al., 1979). 
(b) The ideal scenario for amplicon sequencing- based studies is that a sequenced read is equivalent to an organism, or proportional to 
its abundance. (c) The multicellularity of eukaryotes results in an overestimation of the abundance according to body size, while (d) the 
abundance of organisms with multiple copies of the marker gene per cell will also be overestimated. Finally, (e) organisms belonging to a 
single species, but that contain multiple, different copies of the marker gene (intragenomic polymorphisms) may be estimated as several 
species. These biases affect estimates of (f) diversity, (g) the total abundance of organisms, and (h) the abundances of specific species. In the 
case of intragenomic polymorphisms, compositional data may be biased by the incorrect classification of different sequences from a single 
organism as multiple species, indicated by error bars
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sampling practices, compromise the comparability of diversity and 
community composition among taxa, studies, and sampling designs 
from amplicon sequencing data. Our aim is to identify the challenges 
and limitations associated with this approach, as well as to provide 
recommendations on how to produce and analyse amplicon se-
quencing data so that the data are reusable and results interpretable.

2  |  PROBLEMS

Morphological, taxonomic, phylogenetic, and sampling variation 
may all bias the quality of amplicon sequencing data of eukaryotes. 
In turn, this alters estimates of their α- diversity (i.e., richness, even-
ness), β- diversity (turnover), abundance, and composition.

2.1  |  Morphological variation

Soil eukaryotes range in body size from unicellular protists to multi-
cellular organisms (i.e., earthworms and snails; Figure 1a), all of which 
may contribute DNA to a soil sample. The study of ecological com-
munities with amplicon sequencing relies on the assumption that the 
genes belonging to each individual in the community are amplified 
proportionally to their abundance in the community (ideally, one 
read: one organism; Figure 1b). All life deviates from this assump-
tion, but with their variable morphologies, soil eukaryotes deviate 
from one read: one organism in several ways, and to a greater extent 
than prokaryotes, which we overview below.

First, multicellularity disrupts estimates of relative abundances, 
as these become confounded with the organisms’ sizes (Elbrecht & 
Leese, 2015; Figure 1c). Second, the variable number of copies of a 
marker gene is exacerbated in eukaryotes. While bacterial cells may 
contain up to 15 copies of the 16S RNA gene, protists may contain 
between 1 and 400,000 copies of the 18S rRNA gene (Kirchman, 
2018; Figure 1d). In bacteria, this variable gene copy number can be 
corrected using bacterial sequence databases (although is discour-
aged for soil prokaryotes, which are poorly represented in sequence 
databases; Louca et al., 2018); however, eukaryotic sequence da-
tabases are considerably sparser (Geisen et al., 2019). These two 
phenomena obfuscate the relationship between the number of gene 
copies detected from a sample and the abundance of organisms (i.e., 
number of individuals) in the community, leading to potential over-
estimation of the abundance of larger individuals or those with the 
most copies of the marker gene (Geisen et al., 2019; Figure 1g– h). 
Studies which focus on groups with known cell numbers by isolating 
the organisms prior to sequencing have approached this limitation 
by modelling relative copy numbers per individuals (e.g., in nema-
todes; Darby et al., 2013) but this does not work for the majority of 
soil fauna that are highly variable in body size. Third, a single eukary-
otic cell may have multiple, different copies of a gene (intragenomic 
polymorphisms, Figure 1e), as has been shown for protists, nema-
todes, and fungi (Bik et al., 2013; Thornhill & Santos, 2007; Wu et al., 
2016). While multicellularity and multiple gene copies per cell lead 

to an overestimation of abundance, intragenomic polymorphisms 
can result in inflated estimates of α- diversity including richness, or 
the number of taxa (Figure 1f). These polymorphisms can emerge 
quickly (i.e., over 400 generations in a nematode population; Bik 
et al., 2013). Furthermore, the number of marker genes per cell may 
vary within an individual. For example, the number of mitochondria 
in a cell depend on the cell's function (Veltri et al., 1990), and this 
may also result in skewed estimates of individual abundances.

2.2  |  Taxonomic and phylogenetic variation

To work accurately, the marker gene or region of choice must be 
sufficiently conserved on either flank of the DNA segment so that 
primers can capture all versions of the segment; but it must also be 
adequately variable in the centre of the segment to classify species 
according to variations in the DNA sequences. Such an ideal uni-
versal marker does not exist, as life exhibits a wide range of mor-
phological and phylogenetic variation, and increased universality of 
a marker generally comes at the cost of taxonomic resolution. While 
the 16S rRNA gene is widely used to classify prokaryotes into taxo-
nomic units, no such consensus exists among eukaryotes, and extant 
markers must consider several hurdles that arise from this variation.

Primer mismatches, in which a primer does not match the DNA 
template and fails to amplify it, occur selectively (Elbrecht & Leese, 
2012; Tedersoo et al., 2016), resulting in an underestimation of α- 
diversity (Figure 2b,e). Primer mismatches result in the systematic 
exclusion of certain clades (Nichols et al., 2018), making diversity 
estimates primer- specific. For example, soil invertebrate communi-
ties exhibit different compositions depending on whether the 28S 
rRNA gene or the COI gene is sequenced (Dopheide et al., 2019), and 
diversity estimates may depend on the choice of marker gene (e.g., 
18S rRNA or COI gene; Tang et al., 2012), or on the target region 
selected within the marker gene (e.g., in the 18S rRNA gene; Leasi 
et al., 2018).

The ability of a marker gene to detect taxonomic α- diversity is 
further obscured by the relationship between trait-  and gene- based 
taxonomy. On the one hand, varying rates of evolution between dif-
ferent clades result in different taxonomic resolutions. For example, 
morphological differentiation in recently radiated lineages may be 
more apparent than genetic differences (Eberle et al., 2020). These 
may result in the classification of all members of a clade as a single 
species (Tang et al., 2012; Tedersoo et al., 2016; Figure 2c,e), the un-
derestimation of α- diversity (Leasi et al., 2018), and the potential un-
derestimation of β- diversity. On the other hand, marker genes may 
be better able to identify cryptic species (Fonseca, 2018).

The operational taxonomic units (OTUs) defined by se-
quences often do not match established taxonomic frame-
works for eukaryotes (Figure 2d), and provide a different 
paradigm for quantifying diversity and composition than 
morphology- based assessments (Shade et al., 2018). A cutoff 
of 97% or 100% similarity in the 16S rRNA gene is generally 
used for prokaryotes (but see Mysara et al., 2017); however, 
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no such consensus exists for eukaryotes. The taxonomic level 
at which the community is analysed greatly affects estimates 
of α- diversity (i.e., in nematode communities; Dell’Anno et al., 
2015; Figure 2e). Due to the variable rates of evolution among 
eukaryotic taxa, there is probably no universally applicable 
species cutoff (Mysara et al., 2017). Defining taxonomic units 
at the level of single nucleotide variations— the strictest pos-
sible definition for the sequenced amplicons— is a viable, and 

increasingly popular alternative (Callahan et al., 2017; Edgar, 
2018). However, this level of resolution may confound biolog-
ical variation with sequencing- related artefacts, or capture 
population- level variation, affecting the ecological interpre-
tations. Whether a single marker region can provide sufficient 
resolution to accurately characterize community α- diversity 
has been questioned (Rodriguez- R et al., 2018), and the degree 
to which universal markers capture diversity is marker- specific 
(Ficetola et al., 2020).

2.3  |  Sampling variation

One of the greatest incentives for using amplicon sequencing is 
the potential to facilitate synthesis and the comparison among 
distinct groups of eukaryotic taxa. Spatial structuring has long 
been recognized in ecological sampling designs in microbial ecol-
ogy (e.g., spatially explicit designs; Yergeau et al., 2007), and the 
study of the global distribution of microbes (Fierer & Jackson, 
2006; Green et al., 2004; Martiny et al., 2006). The spatial scale 
of sampling is critical for comparability across studies (Dickie 
et al., 2018), but has received less attention. The spatial scale of 
sampling (Dungan et al., 2002) is characterized by volume or area 
of samples taken (their grain), the spatial extent of a study, and 
the distance between samples (Figure 3). All three aspects of spa-
tial scale are seldom documented in studies of soil biota, and the 
homogenization of multiple, randomly selected samples within a 
plot is common.

Two fundamental spatial patterns in ecological communities 
are (i) the distance decay of compositional similarity (DDS, Nekola 
& White, 1999; Figure 3), and (ii) the taxa- area (or taxa- volume) 
relationships (TAR, Green et al., 2004; Woodcock et al., 2006; 
Figure 3). These illustrate why sampling choices can strongly 
affect the resulting estimates of diversity and community com-
position. For example, due to DDS, samples that are taken more 
closely together will typically have more similar compositions, 
and thus have lower total diversity, than samples that are taken 
further apart. It is therefore essential to take the grain, distance, 
and extent of the samples into consideration when comparing 
across samples which were collected in disparate ways. However, 
this information is seldom considered (Dickie et al., 2018). In ad-
dition, the abundance of soil biota varies over time, but temporal 
patterns of soil eukaryote diversity are poorly understood (Bálint 
et al., 2018; Briones, 2018).

The laboratory methodologies used prior to sequencing may 
also bias soil diversity assessments. Estimates of diversity are 
influenced by the laboratory protocol used for DNA extraction 
(Santos et al., 2017). Current protocols for eukaryotic sequenc-
ing are nearly identical to those for prokaryotic sequencing 
(e.g., the Earth Microbiome Project's protocols; Thompson 
et al., 2017), despite the much wider range of body sizes in soil 
eukaryotes (Figure 1). The suggested amount of the soil sam-
ple (less than 1 g in most commercial DNA extraction kits) is 

F I G U R E  2  Issues arising from variation in phylogeny and 
taxonomy. (a) The ideal scenario for amplicon sequencing- based 
studies is that an operational taxonomic unit (OTU) is equivalent 
to a taxonomic species, and that all species are detected with 
sequencing; however (b) primer mismatches result in the systematic 
exclusion of certain branches of the phylogenetic tree which are 
not captured by the selected primer set, resulting in the omission 
of present taxa. (c) Differing evolutionary rates among clades may 
result in the clustering of several species into one OTU, and (d) 
the taxonomic classification of species may greatly differ from 
the sequence- based classification. (e) All three phenomena may 
bias estimates of biodiversity; however, the difference between 
taxonomy and sequence- based classifications may compound the 
misestimation of diversity, indicated by grey lines
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also much smaller than that traditionally used in morphological 
assessments of soil fauna, and this may result in estimates of 
α- diversity that are lower and have higher between- replicate 
variability (e.g., in nematodes; Wiesel et al., 2014). Indeed, the 
finding that body size positively correlates with random varia-
tion in community structure (Zinger et al., 2019) may be due to 

the patchiness that arises from observing large organisms with 
relatively small samples (De Gruyter et al., 2019). Further stud-
ies sampling larger volumes (e.g., extracellular DNA extraction, 
Taberlet et al., 2012; Zinger et al., 2016) are necessary to de-
termine the extent to which β- diversity is inflated in eDNA data 
targeting larger soil organisms.

F I G U R E  3  Spatial sampling issues that 
affect average species richness per sample 
(�), total richness across all samples (γ), 
and total richness of an entire site, i.e. 
both within and outside of the samples 
(γsite). All of the expected effects stem 
from two ubiquitous empirical patterns: 
the increase of number of taxa with 
increasing area or volume (taxa- area or 
taxa- volume relationship) and the Tobler's 
law (a.k.a. distance decay of similarity) 
that states that closer locations are more 
similar in their taxonomic composition 
that distant ones
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3  |  MOVING FORWARD

Despite the long list of biases inherent to eukaryotic amplicon se-
quencing, certain precautions can be taken to mitigate their impact 
in ecological studies. We propose a three- step approach to using 
eukaryotic amplicon sequencing data to study soil communities, and 
recommendations for future experimental designs.

3.1  |  Stratify analyses

We advocate for the separation of eukaryotic amplicon sequencing 
data by group (heretofore stratification) as a way to deal with the 
wide range of organisms assessed with this technique (Graham et al., 
2018). This approach is related to using different marker groups to 
target specific groups (Oliverio et al., 2020; Tedersoo et al., 2016). 
Stratification ensures that detection biases do not propagate to the 
rest of the community and that observations remain comparable 
within groups. For example, intragenomic polymorphisms of 18S 
in nematodes can inflate nematode diversity estimates (Dell’Anno 
et al., 2015). Here, stratifying the data may ensure that the resulting 
bias does not affect other soil eukaryotes. There is no consensus 
on the optimal grouping, and this requires careful consideration. 
Historically, soil biota have been grouped according to physical 
traits, most notably body size (Orgiazzi et al., 2016). Size- based 
stratification has a phylogenetic component and may overcome er-
rors associated with body size (i.e., multicellularity), but can ignore 
finer problems derived from genetic differences, such as primer 
mismatches. Alternatively, stratifications based strictly on phylog-
eny may more comprehensively account for errors (e.g., Zinger et al., 
2019). Growing evidence suggests that traits, including body size, 
are phylogenetically conserved across the tree of life (Blomberg 
et al., 2003; Martiny et al., 2015), and size data may not be available 
a priori. However, most research on trait conservatism in eukary-
otes has focused on plants and vertebrates, and whether relevant 
morphological and genetic features are conserved in soil eukaryotes 
(dominated by fungi, protists and invertebrates) requires investi-
gation. Whether stratification is necessary may depend on the re-
search question, as analysing organisms with diverse body sizes with 
amplicon sequencing may be equivalent to assessing the community 
through estimates of relative biomass, rather than individual abun-
dances (Elbrecht & Leese, 2015; Schenk et al., 2019; Yoccoz et al., 
2012), once accounting for the difference in marker gene copies per 
cell.

3.2  |  Rarefy separately

In addition to the standard issues associated with the ecological 
analysis of observational data, sequencing data can be further dis-
torted by the amplification and sequencing processes. Amplification 
artificially and exponentially increases the number of reads in the 
original sample, and the sequencer used imposes its own limits on 

the number of reads. Amplicon sequencing data must therefore 
be standardized prior to statistical analyses (Quinn et al., 2019). 
However, no consensus on the best methodology for standardizing 
amplicon sequencing data exists, and the optimal method depends 
on the ecological questions of interest (McKnight et al., 2019) and 
the characteristics of the data (Weiss et al., 2017). We advocate 
for rarefaction (see Gotelli & Colwell, 2001), which randomly resa-
mples observations to the same depth as a sensible compromise. 
Rarefaction outperforms most bioinformatics methods in compo-
sitional analyses (McKnight et al., 2019), and deals well with small 
sample sizes and variable read depths (Weiss et al., 2017).

When cataloguing all eukaryotes simultaneously, biases arising 
from morphological and phylogenetic variation may interact to fur-
ther distort estimates of diversity. We suggest rarefying phyloge-
netic groups separately, as many of the characteristics which bias 
abundance estimates (i.e., marker gene copies per cell, organism size, 
and taxonomic resolution of the marker gene of choice) are phyloge-
netically conserved (Briones, 2014; Martiny et al., 2015). Consider, 
for example, a comparison between the diversity in two adjacent soil 
samples, one which captured a segment of earthworm tissue and a 
second one which did not. In rarefying both samples to the same 
observation depth, a high proportion of the reads in the first sample 
may belong to the earthworm. Consequently, diversity will be un-
derestimated in the first sample relative to the second. Stratifying 
data may be a good starting point, however further benchmarking 
is necessary to determine the optimal grouping to reduce biases. 
Performing rarefactions separately for each group allows the ad-
justment of the minimum amount observations of individuals for 
each group, and prevents the propagation of biases across different 
groups.

3.3  |  Consider presence/absence 
instead of abundance

One way to address the mismatch between number of reads and 
abundance is to work with binary presence/absence (incidence) data 
instead of abundances. This approach has been recommended for 
certain types of ecological data and questions (Beentjes et al., 2018; 
Delgado- Baquerizo et al., 2020; Elbrecht & Leese, 2015; Ficetola 
et al., 2015). Incidence data are more common, easier to collect, and 
potentially more comparable (Alberdi & Gilbert, 2019), as they suffer 
less from the mismatch between reads and abundances which arises 
from variable numbers of marker gene copies per cell and cells per 
organism (Figure 1, Lamb et al., 2019).

Many fundamental ecological variables are derived from inci-
dences, and are robust and practically useful (i.e., species richness, 
incidence- based β- diversity, and their scaling relationships). For ex-
ample, in traditional ecology, simple incidence- based number of spe-
cies (richness) can be predictive of biomass productivity and other 
ecosystem services (Tilman et al., 2014). It has also been shown that 
the amount of information about an ecological process can be, in 
some instances, higher in incidence data than in abundance data 
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(Bastow Wilson, 2012; Dale et al., 2001). This is because incidences 
and abundances can be driven by different ecological processes 
(Orrock et al., 2000; Potts & Elith, 2006; Wenger & Freeman, 2008). 
For example, while extreme winter temperatures or soil type may 
be a limiting factor determining presence/absence, the actual abun-
dance may depend on variation in microclimates and microhabitats, 
which cannot be studied with the common destructive sampling 
practices (Fierer, 2017). In other words, variation of abundances 
can mask important ecological correlations at the incidence level 
(Bastow Wilson, 2012).

While converting amplicon sequence data is the most conserva-
tive approach to analysing diversity through amplicon sequencing, 
it is not perfect. Incidences can inflate the importance of rare OTUs 
(Deagle et al., 2019), which may be artefacts of sequencing errors 
or an overly- strict OTU similarity threshold. Furthermore, incidence 
data may not match research objectives, such as when defining a 
core diet or microbiome (Alberdi & Gilbert, 2019) or when the 
measurement of interest is taxon biomass, rather than abundance. 
Therefore, it is important to ensure that abundance data are re-
trievable for future reuse. The decision whether to work with abun-
dances or incidences thus depends on the specific hypotheses and 
research questions.

Using a continuum of diversity measures differentially weighted 
by abundances, such as Hill numbers (Alberdi & Gilbert, 2019; Hill, 
1973) can be a useful alternative. This allows weighting OTUs ac-
cording to their rarity, offering a mathematically elegant continuum 
between incidence-  and abundance- based measures of biodiversity 
(Chiu & Chao, 2016). This approach has already been used to quan-
tify diversity in environmental DNA (Calderón- Sanou et al., 2020).

3.4  |  Standardize sampling

One particularly underappreciated source of methodological vari-
ation is how soil samples are arranged spatially, since biodiversity 
and community composition vary with area, volume, and distance 
(Figure 3). A community can be defined for any extent, and all ex-
tents may be ecologically meaningful (Chase et al., 2018; Wiesel 
et al., 2014). However, communities defined at different spa-
tial scales (both grain and extent) cannot be directly compared 
(Figure 3). In soils, combining multiple subsamples from a defined 
plot, or pooling, is common, as is insufficient reporting of sampling 
metadata (Dickie et al., 2018). These two practices make accounting 
for experimental differences or sampling scale a posteriori impos-
sible. The Earth Microbiome Project (Thompson et al., 2017) has 
pioneered the large- scale standardization of laboratory protocols 
and the recording of standard environmental metadata. We argue 
that additional metadata of the spatial and temporal components 
of sampling should be reported for each sample. This includes the 
distance among samples, precise reporting of the spatial location, 
volume, extent, and grain of sampling, and the time of sample collec-
tion. With such information, it will be possible to account for differ-
ences in sampling strategy statistically, to compare samples across 

studies, and study the relationship between sample volume, organ-
ism size, and the patterns of diversity detected in the heterogeneous 
soil matrix.

3.5  |  Account for imperfect detection and false 
positives statistically

Many of the issues described above concern imperfect detection 
(i.e., the detection of OTUs that are not present in the sample, or the 
failure to detect present OTUs; Figures 1 and 2).

Several statistical methods have been developed to deal with the 
complexities of microbiome data (e.g., SparCC, isometric log ratio 
transforms, and machine learning algorithms, see Knight et al., 2018). 
One additional solution is occupancy modelling (Guillera- Arroita, 
2017), a powerful toolset that accounts for the biases caused by 
imperfect detection (Figure 4), by adjusting for false presences and 
false absences (Lahoz- Monfort et al., 2016). Occupancy models are 
hierarchical statistical models that explicitly separate the observed 
(biased) detections and the unobserved true presences/absences 
(i.e., occupancy) or abundances. This is possible by having separate 
submodels for the true occupancy and the observation process 
(Figure 4). For the model to work, the data must be informative about 
the detection process, for example via repeated sampling in time or 
spatial subsamples (Willoughby et al., 2016). Importantly, there are 
also variants that can estimate abundance (Kery & Andrew Royle, 
2010), work for multispecies (Iknayan et al., 2014), estimate multiple 
facets of biodiversity (Broms et al., 2015), and can be designed to 
account for the complex spatial structuring (Chen & Ficetola, 2019). 
Occupancy modelling also offers an extension that considers the 
false positive rate (i.e., the rate at which OTUs which were not pres-
ent in the sample are detected, Lahoz- Monfort et al., 2016; Royle & 
Link, 2006). However, complex occupancy models must be informed 
by further experimental work (e.g., from additional PCR calibrations, 
using confirmation designs, or in the form of Bayesian priors and 
plausible limits on the probabilities; see Lahoz- Monfort et al., 2016 
for a review). The first promising steps have been made towards the 
application of multispecies occupancy models to various amplicon 
sequencing data (Doi et al., 2019; Ficetola et al., 2015; McClenaghan 
et al., 2020), and we argue that this is a good starting point for data 
analysis of soil eukaryotes.

4  |  FUTURE DIREC TIONS: 
BENCHMARKING AND STANDARDIZING

While sequencing technologies for eukaryotes can be adopted 
from prokaryote- based techniques, benchmarking and stand-
ardization remain to be done. Empirical studies have shown how 
sample size (Wiesel et al., 2014), extraction method (Griffiths 
et al., 2018), and the primers used (Schenk et al., 2019) influence 
diversity estimates in isolated nematode communities, but less is 
known about how these procedures affect the diversity estimates 
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of other groups of soil fauna (Marquina et al., 2019). One excep-
tion is the effect of DNA extraction and storage on diversity as-
sessments, which has received considerable attention (Delmont 
et al., 2011; Guerrieri et al., 2020; İnceoǧlu et al., 2010; Zinger 
et al., 2016). Benchmarking is a formidable challenge, but it is nec-
essary for soil eukaryotic biodiversity assessments. The accuracy 
of different universal gene markers needs to be compared for each 
phylogenetic subgroup of soil biota, especially since most studies 
currently use single markers for universal diversity assessments. 
The affinity of any primer pair is likely to be unbalanced across 
the tree of life, and marker regions differ in their coverage of 
taxa (Ficetola et al., 2020). One alternative is to simultaneously 
sequence multiple marker regions, a practice that increases di-
versity estimates, more closely approximates morphology- based 
assessments (Meyer et al., 2020), and may become increasingly 
accessible as the cost of high throughput sequencing continues 
to decrease (Eberle et al., 2020). Long- read metagenomic shot-
gun sequencing may also serve to compare diversity assessments 
performed with different gene segments, and may help uncover 
novel biota (Eloe- Fadrosh et al., 2016) and further biases, such 
as those associated with DNA extraction (Jacquiod et al., 2016). 
Additionally, the sensitivity of the resulting sequence fragments 
for assigning species identities needs to be determined and re-
ported within each phylogenetic group. In a first step, this can be 
done in silico using extant genetic repositories of fully sequenced 
individuals. Such benchmarking efforts are essential to character-
izing and quantifying biases, within taxonomic groups as well as 
across all eukaryotes targeted (Elbrecht & Leese, 2015; Thomas 

et al., 2016), and may aid in selecting the appropriate phylogenetic 
grouping for stratifying the data prior to analyses.

Assessing soil communities using amplicon sequencing involves 
countless choices (e.g., sample size, marker gene, primers), which 
may affect the resulting output, and its comparability to other 
data. Another, easier way to ensure comparability is with the de-
velopment of a standard protocol, such as that proposed by the 
Earth Microbiome Project (Thompson et al., 2017). However, the 
standardization of methods across studies may never be perfect, 
and the continued development of several protocols may maximize 
the discovery rate. Here, the best solution is to ensure that experi-
mental methods, potential biases and deviations from the standard 
protocol (for example varying sample size or primer sequence) are 
always reported in the metadata. Guidelines for the deposition of 
comprehensive experimental metadata have been proposed (Yilmaz 
et al., 2011), but these do not require the standardized reporting 
of spatial sampling designs. The archiving of laboratory protocols 
(Rambold et al., 2019) may offer a more comprehensive paradigm 
for data reusability. If sufficient metadata are available, then data 
integration, meta- analyses, and comparison among studies are pos-
sible, as methodological biases can be modelled and accounted for 
a posteriori using statistical models and meta- analytical machinery 
(Gerstner et al., 2017).

As the cost of next generation sequencing continues to plummet 
and its throughput continues to rise, amplicon sequencing will prob-
ably become an integral part of soil ecology, filling long- standing 
gaps in the field and improving our understanding of belowground 
biota (Cameron et al., 2019). Data created by amplicon sequencing 

F I G U R E  4  Example of a simple occupancy model that accounts for imperfect detectability when estimating the presence/absence of a 
single species at three sites (based on Kéry, 2010 and Guillera- Arroita, 2017). The model has two parts: (i) an occupancy submodel, which is 
an ordinary logistic regression of presence/absence against a covariate, and (ii) an observation submodel that estimates detectability of the 
species thanks to repeated sampling at each site. Both submodels are fitted at the same time, usually by Markov Chain Monte Carlo (MCMC) 
or maximum likelihood. Royle and Link (2006) and Lahoz- Monfort et al. (2016) provide generalizations of this model that also account for 
false positives



    |  1767JURBURG et al.

may be integrated to inform ecological syntheses, and will serve as 
the record of soil biodiversity for future generations, aiding in the 
study of the effects of global change on the diversity and dynamics 
of soil biota. Ensuring that these data remain comparable in the long 
term is paramount for the both the present and the future of soil 
ecology.
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