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The representation of a land cover type (i.e. habitat) within an area is often used as 
an explanatory variable in species distribution models. However, it is possible that a 
simple binary presence/absence of the suitable habitat might be the most important 
determinant of the presence/absence of some species and, thus, be a better predictor 
of species occurrence than the continuous parameter (area). We hypothesize that the 
binary predictor is more suitable for relatively rare habitats (e.g. wetlands) while for 
common habitats (e.g. forests) the amount of the focal habitat is a better predictor. We 
used the Third Atlas of Breeding Birds in the Czech Republic as the source of species 
distribution data and CORINE Land Cover inventory as the source of the landcover 
information. To test our hypothesis, we fitted generalized linear models of 32 water 
and 32 forest bird species. Our results show that for water bird species, models using 
binary predictors (presence/absence of the habitat) performed better than models with 
continuous predictors (i.e. the amount of the habitat); for forest species, however, 
we observed the opposite. Thus, future studies using habitats as predictors of species 
occurrences should consider the prevalence of the habitat in the landscape, and the 
biological role of the habitat type in the particular species’ life history. In addition, 
performing a preliminary comparison of the performance of the binary and continu-
ous versions of habitat predictors (e.g. using information criteria) prior to modelling, 
during variable selection, can be beneficial. These are simple steps that will improve 
explanatory and predictive performance of models of species distributions in biogeog-
raphy, community ecology, macroecology and ecological conservation.
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Introduction

Species distribution models (SDMs) are an important tool in macroecology, bioge-
ography and wildlife management. The goal of SDMs is to map species distributions 
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or to estimate species niches, and there is an ongoing effort 
to improve their reliability (Araújo et al. 2019, Zurell et al. 
2020, Merow et al. 2022). Selecting appropriate environ-
mental predictors is a major methodological challenge of 
species distribution modeling (Dormann et al. 2007, Austin 
and Van Niel 2011, Williams et al. 2012, Mod et al. 2016, 
Misiuk et al. 2018, Moudrý et al. 2019, Smith and Santos 
2020, Zurell et al. 2020). These environmental predictors, 
such as landcover or habitat type, are most often included 
in SDMs as the area or percentage of a particular land cover 
type within the individual sites (e.g. grid cells or atlas map-
ping squares; Milanesi et al. 2017, Halstead et al. 2019, 
Lecours et al. 2020, Tessarolo et al. 2021).

But what if, for some species, the total area of habitat is 
less relevant than the simple fact that a particular habitat is 
present or absent? To our knowledge, this possibility has been 
considered neither theoretically, nor empirically. In conserva-
tion biology, this is somehow related to the concept of criti-
cal habitat area (Fahrig 2001, Melo et al. 2018), i.e. to the 
idea that there is a certain habitat amount (threshold) below 
which a species cannot survive, leading to a step-like, rather 
than continuous, response of species probability of occur-
rence to habitat area. To our knowledge this has not been 
explored in the context of SDMs. Further, a guideline on 
whether habitat predictors should be included in SDMs as 
continuous, or binary variables would be directly applicable 
in many subfields of biogeography and community ecology.

In this study, we evaluate the effect of using forest and 
water habitats as binary or continuous predictors in species 
distribution modelling of 64 forest and water specialist bird 

species. Specifically, we propose two alternative hypotheses 
linking the probability of occurrence (P) of a species to either 
(a) the amount or (b) the presence/absence of a particular 
habitat within a spatial unit (e.g. grid cell).

The first hypothesis (H1) assumes that P is driven by 
continuous areas (Fig. 1a), i.e. that P increases continuously 
with the increase in the habitat area within a spatial unit. 
Reasoning supporting H1 is as follows: 1) Larger habitat areas 
support larger populations due to their carrying capacity and 
food and shelter availability, so that populations are less sus-
ceptible to stochastic extinctions, competition, predation and 
inbreeding depression (Hanski 1999, Lande et al. 2003), and 
2) larger habitat areas are bigger targets for colonizing indi-
viduals from the surrounding habitat matrix (Buckley and 
Knedlhans 1986), increasing the probability of rescue effects 
after extinction events (Brown and Kodric-Brown 1977). We 
propose that these mechanisms will operate in the most com-
mon habitat types. H1 will also apply to species specializing 
in these common habitats. In Central Europe, forests can be 
considered an example of such habitats, with forest special-
ist species such as the long-tailed tit Aegithalos caudatus, the 
goldcrest Regulus regulus or the crested tit Parus cristatus.

An alternative hypothesis (H2) is that P is driven by binary 
presence or absence of a habitat (Fig. 1b, 2b). In other words, 
the amount of habitat within a spatial unit is irrelevant, and 
what matters for the species is that the habitat is simply there. 
However, we first need to know how small, or large such hab-
itat needs to be to be able to support a viable population of 
the species. Therefore, H2 assumes that there is a threshold 
of habitat amount (e.g. 20% as in Fig. 1b, 2b), below which 

Figure 1. Two alternative hypotheses for the effect of the habitat area on the species’ probability of occurrence (P), illustrating the theoretical 
possibility that habitat area be an accurate or inaccurate predictor of species distributions depending on if it is fitted as a continuous or 
binary variable and the process that generated the data. In the left panel we modelled P as a sigmoidal curve (generative model, black line) 
to generate 100 presences/absences of a species, drawn from a Bernoulli distribution with parameter P (jittered points). In right panel we 
used a binary habitat classification and a step function to generate the data. We then fitted binomial GLM with either continuous area, or 
binary area, as predictor (red and blue lines).
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the species is unlikely to occur, and above the threshold the 
species will persist. We assume that an increase of the habitat 
area beyond the threshold size will not increase P (note that 
the threshold of habitat amount is affected by resolution of 
the habitat data). The presence of such threshold has been 
predicted both theoretically (Andrén 1994, Fahrig 2001) and 
documented empirically for birds (Melo et al. 2018).

We propose that H2 applies particularly to species spe-
cializing in rare (i.e. less prevalent) habitats, and species with 
good dispersal abilities and ability to readily identify the hab-
itats in the landscape. Consequently, if a fragment of suitable 
habitat (irrespectively of its area) appears in the landscape, it 
will quickly attract a population of the species, thus causing 
high P. In Central Europe, water bodies can be considered an 
example of such habitat for water specialist species such as 
the common teal Anas crecca, the great-crested grebe Podiceps 
cristatus or the black tern Chlidonias niger.

Material and methods

Study area and bird distribution data

The study area was the territory of the Czech Republic, a central 
European country covering almost 79 000 km2 (Fig. 2a). Data 
on bird species were obtained from the Third Atlas of Breeding 
Bird Distribution in the Czech Republic (Šťastný et al. 2006). 
The study area is divided into 628 grid squares of approx. 134 
km2 (10′ east longitude × 6′ north latitude; hereafter referred 
to as mapping squares) to which bird occurrences and envi-
ronmental predictors are referred. The fieldwork for the atlas 
was conducted by volunteers between 2001 and 2003 where 
the breeding status of all species was recorded in each mapping 
square. Field observations of the bird species occurring in each 
mapping square were recorded using 17 numerical breeding 
codes (Hagemeijer and Blair 1997). Breeding occurrence of 
each bird species within a given mapping square was classi-
fied into one of the following categories: 0 – non-breeding 
(where no observations of the species were made, or where the 
species was observed but no breeding evidence was found), A 
– possible breeding, B – probable breeding or C – confirmed 
breeding. For the purpose of our study, all breeding categories 
(A, B and C) were used as presences whereas category 0 was 
used as absences. We prepared data for 85 bird species, 36 
of them nesting in wetlands and surrounding habitats (e.g. 
standing water, littoral zones of ponds, swamps), and 49 spe-
cies nesting in forests, following classification of Reif et al. 
(2006). Nevertheless, we had to remove 21 species with rela-
tively small (less than 30 presence cells out of 628 cells), and 
relatively high occupancy (more than 598 presence cells out 
of 628 cells). Therefore, 32 water and 32 forest bird species 
(Supporting information) were included in the study.

Habitat variables

We derived four habitat predictors from the CORINE Land 
Cover database at 100 m resolution (Feranec et al. 2010). 
Specifically, within mapping squares, we derived the area of 

agricultural areas (CORINE class 2), artificial surfaces divided 
into four classes (0, 0–20, 20–40, > 40 km2; CORINE class 
1), continuous area of water bodies (CORINE class 5.1.2) and 
area of forest (CORINE class 3.1). In addition, binary factors 
representing presence or absence of water bodies and forests, 
respectively, were calculated. In order to generate binary hab-
itat maps, it is necessary to determine an area threshold that 
defines the presence-absence of the habitat. An appropriate 
threshold should consider the prevalence of the habitat across 
the region of interest, the grain size at which the variable is 
being considered (i.e. the size of the grid cells at which the 
species are recorded) and the original grain size that the habi-
tat variable is being aggregated from (i.e. the size of the grid 
cells of the original land-cover data, which is then aggregated 
to the larger modelling grain size). Due to the uncommon-
ness of water habitats as well as due to the coarse resolution 
of CORINE Land Cover, we considered any amount of the 
water habitat in a cell as presence (i.e. the proportion of the 
cell occupied by one hectare set to > 0%). Forest pixels are, 
on the other hand, present in all mapping squares across the 
study region and, for this reason, we tested several thresholds 
(10, 20, 30, 40 and 50%) to derive the binary predictor.

Other environmental variables

Although the habitat predictors were our main focus, other 
predictors, such as climate, may also be important in deter-
mining the distributions of species. As climatic predictors, we 
used current climatic data from WorldClim (Hijmans et al. 
2005). Following previous studies, we used two predictors: 
mean temperature and mean precipitation during the breed-
ing season, i.e. in April–June (Moudrý and Šímová 2013, 
Venne and Currie 2021). We downloaded these at a resolu-
tion of 30 arc seconds (~ 1 km2) and averaged them inside 
each mapping square to match the grid resolution of the 
species distribution data (~ 100 km2). We also considered 
usage of elevation predictors such as maximum, minimum 
and range of elevation derived from Shuttle radar topography 
mission (SRTM, Farr et al. 2007, Moudrý et al. 2018) as 
they might be ecologically important to birds (Kosicki 2017). 
However, as these variables were highly correlated with the 
mean temperature in April–June, we eventually decided not 
to include them. The data were processed in arcgis ver. 10.7.1 
(ESRI, CA, USA) and R (<www.r-project.org>) software.

Species distribution models

We fitted SDMs for each species using the climate variables 
and the water (or forest cover) variable for water (or forest) 
species; modelling was always performed separately for the 
continuous as well as binary water (or forest) variable. We did 
not use the information about forest areas for wetland species 
and vice versa (see Supporting information for used formu-
las). In addition, we also considered using forest and wetland 
area transformed with arcsine, log or square root, all of which 
are often adopted in ecological studies for areal predictors (for 
more details, Roberts 1986, Palmer 1993). However, these 
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Figure 2. (A) The study region covers the territory of the Czech Republic, Europe. The grid consists of cells of 10′ east longitude × 6′ north 
latitude (approximately 12 × 11.2 km, n = 628), as used in the breeding birds atlases of the Czech Republic (Št’astný et al. 2006). Water 
bodies shown on the left side have a 500 m buffer for better visibility. (B) Representation of binary variables based on different threshold of 
habitat amount. We considered any amount of the water habitat in a cell as presence (i.e. the proportion of the cell occupied by one hectare 
set to > 0%). In addition, we tested several thresholds (e.g. 20% and 40%) to derive the binary predictor for forest variables.
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transformations did not improve the models and were not 
further considered in this study. We used generalized linear 
models (GLMs; McCullagh and Nelder 1989), with bino-
mial error distribution and a logit link function implemented 
in the R function glm. Environmental predictors were used 
as monotonic sigmoidal functions on the probability scale of 
the response (i.e. linear in logit space).

Model calibration and evaluation

We assessed the performance of the models using calibration 
and discrimination metrics where calibration refers to the 
accuracy of description of the environmental relationships, 
and discrimination refers to the ability to separate presences 
from absences (Lawson et al. 2014). We used five-fold cross-
validation where the data were randomly divided into fifths 
to evaluate the models. Four fifths of the data were used to 
train the model and the remaining one fifth was used to assess 
the performance. To assess model calibration, we used like-
lihood-based McFadden’s pseudo R2 (Smith and McKenna 
2013), which indicates the proportion of the deviance in the 
dependent variable that is explained by the model (Agresti 
2003). To assess the model discrimination ability, we used the 
area under the curve of the receiver operating characteristic 
plot (AUC). The AUC is a threshold independent measure 
of model performance that ranges from 0 to 1, where a score 
of 1 indicates perfect discrimination, and a score of 0.5 indi-
cates random performance (Fielding and Bell 1997).

Results

The occurrence of water birds was better modelled using the 
binary variable (prevalence of water habitat = 0.4; Fig. 3 4, 
Supporting information), suggesting that their distribution 
is driven simply by presence rather than the area of water 
habitat. In contrast, the models with continuous environ-
mental variables outperformed those using binary predictors 
in modelling forest birds (Fig. 3, 4). This result was observed 
independently of the forest amount threshold for most of the 
species (Supporting information); however, to maintain clar-
ity, we present results of models fitted with a 40 % threshold 
(prevalence of forest habitat = 0.29; see Supporting informa-
tion for results using remaining tested thresholds).

For forest species, models fitted using the area of forest (i.e. a 
continuous habitat variable) achieved poor to excellent model 
calibration (R2: min = 3.34%, max = 42%, mean = 16.2%) 
and discrimination performances (AUC: min = 0.60, 
max = 0.91, mean = 0.74; see Supporting information for 
the performance of individual models). Both model calibra-
tion (R2: min = 2.69%, max = 38.42%, mean = 14.3%) and 
discrimination (AUC: min = 0.6, max = 0.89, mean = 0.72) 
were lower in models using the forest presence (i.e. a binary 
habitat variable) in 28 out of 32 species, although differences 
in model performances were relatively small. The differences 
in model calibration between models fitted using the area 
of forest and forest presence were negligible, except for six 
species where R2 increased by up to 7% (Fig. 4). Similarly, 

Figure 3. Differences in AUC between models fitted with binary habitat presence/absence versus continuous area as predictors. Positive 
values indicate that models with binary habitat predictors performed better than those with continuous predictors and vice versa.
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the difference in AUC was < 0.02 for 22 out of 32 spe-
cies. The highest AUC differences (~0.07) were recorded for 
long-tailed tit Aegithalos caudatus, black redstart Phoenicurus 
ochruros, and spotted flycatcher Muscicapa striata. 

Models fitted for water species using the water presence 
performed better in both calibration (R2: min = 9.62%, 
max = 38.62%, mean = 22.1%) and discrimination (AUC: 
min = 0.69, max = 0.91, mean = 0.79; see Supporting infor-
mation for the performance of individual models) compared 
to those using area of water (R2: min = 5.05%, max = 37.29%, 
mean = 16.96%; AUC: min = 0.63, max = 0.89, mean = 0.75) 
in nearly all cases. R2 was on average ~5 %, and up to almost 
15%, higher when using the water presence (Fig. 3). For 13 
out of 32 water bird species, model discriminations (AUC) 
were increased by > 0.05 when considering the water pres-
ence compared to the area of water. In three cases (black tern 
Chlidonias niger; common goldeneye Bucephala clangula; 
and great-crested grebe Podiceps cristatus) the improvement 
in AUC was close to or even greater than 0.1. The model 
using the area of water was superior to that using the water 
presence only for a single species (sedge warbler, Acrocephalus 
schoenobaenus).

Discussion

Our results are in line with the hypotheses presented in the 
introduction. As expected, for species for which a widespread 

habitat (e.g. forest) is sufficient, models discriminated pres-
ences from absences better and explained more variability 
when a continuous, not binary, measure of the forest (habitat) 
area was used. On the other hand, the opposite was found for 
species specializing in a relatively rare habitat–water. In this 
case, models using water as a binary predictor outperformed 
those with water as a continuous area. As we have suggested, 
there are biological reasons for this: the relationship between 
species biology and specific habitat (and its rarity) determines 
how a binary habitat predictor stands out against continu-
ous one. For instance, in waterbirds, the presence or absence 
of wetland or water habitats, which worked well in binary 
models, is directly related to food and shelter availability 
(Wiens 1992, Weller 1999, Gatto et al. 2008). Moreover, 
highly mobile waterbird species such as common redshank 
Tringa totanus, common tern Sterna hirundo, or gadwall Anas 
strepera are able to spot such habitat and colonize it, even if 
the habitat is rare and isolated in an otherwise dry landscape 
matrix. Thus, a patch of isolated wetland within a grid cell 
is almost guaranteed to host the species, despite the habitat 
being rare. We argue that such biological reasoning should 
precede any decisions about the specific form (binary or con-
tinuous) of predictors in SDMs. However, future studies are 
needed to show if this explanation based on habitat rarity 
applies to other environments, habitats and taxa.

In addition, we propose that the relative merit of con-
tinuous versus binary predictors depends on the interplay 
between spatial resolution of the habitat data (Domisch et al. 

Figure 4. Differences in R2 (%) between models fitted with binary habitat presence/absence vs continuous area as predictors. Positive values 
indicate that models with binary habitat predictors performed better than models with continuous predictors and vice versa.
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2015, Friedrichs-Manthey et al. 2020), spatial grain at 
which habitats are aggregated for modelling (response grain; 
Seoane et al. 2004, Venier et al. 2004, Convertino et al. 
2011, Moudrý and Šímová 2012, Tuanmu and Jetz 2014, 
Šímová et al. 2019), as well as the home range size of the 
species, and its degree of specialisation to the habitat 
(Jedlikowski et al. 2016, Mertes et al. 2020). For highly spe-
cialised species, the ratio between the home range size and 
the grain size of the response variable may be particularly 
important (Jedlikowski et al. 2016), as it determines whether 
the species can gather resources from multiple grid cells, or 
whether it is confined to a single cell. For example, if the area 
of a single cell classified as water is larger than the home range 
of a highly specialised species, the binary predictor (water 
presence) should be used. However, if that area is smaller 
than the species home range, considering the habitat area is 
preferable, as the higher is the representation of water within 
a grid cell, the higher is the probability that the cell contains 
the habitat area necessary for species persistence. In addition, 
our habitat predictors were derived from the CORINE data-
base (Feranec et al. 2010), with a minimum mapping unit 
of 25 ha, and it may be that forest species require habitats 
larger than that. Indeed, SDM studies using common land 
use categories as predictors, such as the proportion of for-
ests, reported low improvement using finer resolution data 
(Seoane et al. 2004, Venier et al. 2004). In contrast, atlas 
squares with binary presence of water almost always contain a 
substantial area of water bodies, possibly enough to support a 
persistent breeding population of a waterbird species, leading 
to the good performance of the binary water predictor. In line 
with this, Šímová et al. (2019) showed that the area of water 
bodies derived from high-resolution (30 m) datasets explain 
distributions of waterbirds better than predictors derived 
from coarser water datasets (including CORINE Land 
Cover). This may be a reason why Tuanmu and Jetz (2014) 
found the Global Consensus Land cover (1 km resolution) 
performed worse for water species than for species that from 
other environments. In addition, Seoane et al. (2004) found 
considerable improvement of models for riparian species 
when finer-resolution data were used. However, this should 
be further validated, especially using finer resolutions than 
ours. Moreover, our results suggest that a hectare of wetland 
may be enough to be used by many water bird species and 
thus in future studies water habitats with equal or larger area 
then one hectare can be used as presence of habitat.

Other reason for the better performance of binary wetland 
predictor is that the threshold for absence was 0%, whereas 
for forest predictors 40% of habitat cover. In the threshold 
chosen in the results, the binary predictor is higher or lower 
than 40% cover of forest, which could be expected to have 
lower discrimination capacity than absolute absence of forest 
versus presence of forest. Note, however, that with the resolu-
tion of response variable approx. 12 × 11 km (used in our 
study), the absolute absence of forest in most of the Europe 
is unlikely.

It is fair to point out that only few species show consid-
erable difference between models fitted using binary and 

continuous variables (i.e. the differences are relatively small 
for most of the species). Thus, models adopting traditional 
continuous variables will likely produce useful predictions. 
Nevertheless, in terms of practical recommendations, we 
advocate for testing both types of such variables during 
variable selection; this could be done using model selection 
criteria (e.g. AIC, BIC, DIC), cross-validation or measures 
of model fit (R2, AUC). In addition, some of the biologi-
cal mechanisms outlined in the introduction can also help 
with the decision on the preferable form of the predictor, and 
the importance of selecting biologically meaningful habi-
tat predictors prior to modelling cannot be overstated. To 
summarize, categorical predictors would be preferred for 1) 
highly mobile species where even a small fragment of habitat 
is sufficient, 2) species for which one can expect a thresh-
old response to the environment (e.g. at least a 20% cover-
age of the habitat within a mapping square is needed for the 
occurrence); and 3) highly mobile species specializing in less 
prevalent habitats, which could be quickly identified in the 
landscape and colonized.

The fact that habitat variables can, depending on the com-
monness of the habitat, perform best either as a binary or 
a continuous predictor, has relevance beyond simple species 
distribution models. After all, the information on the prob-
ability of species presence is sought after in many fields, from 
epidemiology to metacommunity ecology. Particularly in the 
latter, estimation of species responses to environmental con-
ditions (including habitats) is at the core of the assessment of 
the relative role of niche versus spatial processes structuring 
ecological communities (Cottenie 2005, Leibold and Chase 
2017). Our results suggest that if an inappropriate response 
of species to habitat amount (threshold versus continuous) 
is used, it can lead to underestimation of the importance of 
the niche processes. Furthermore, our results are relevant for 
conservation. Specifically, it is encouraging that, for many 
species, the presence of a (rare) habitat above a certain thresh-
old (Radford et al. 2005, Melo et al. 2018) is important irre-
spectively of its area. If the critical threshold is low, even the 
protection of small areas is meaningful.
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